Community

Displaying 10 of 43 results behavior clear search

Cheick Amed Diloma Gabriel TRAORE Member since: Tue, Jan 25, 2022 at 10:57 AM Full Member

Ph.D., computer science, Cheikh Anta Diop University, Master of Science, Applied Mathematics, Nazi Boni University, Bachelor, Mathematics, Nazi Boni University

Cheick Amed Diloma Gabriel Traore is a researcher specializing in modeling multi-agent systems. He earned his PhD from Cheikh Anta Diop University (UCAD) in Senegal. His doctoral research focused on the formalization and simulation of Sahelian transhumance as a complex adaptive system. Utilizing mathematical and computational techniques, he developed agent-based models to analyze the spatiotemporal dynamics of transhumant herds, taking into account factors such as herd behavior, environmental conditions, and socio-economic pressures.

To design the models for his dissertation, Cheick conducted extensive fieldwork in Senegal. He collaborated with interdisciplinary teams to collect data on transhumant practices within the Sahelian ecosystem. With this data, he created a multi-objective optimization framework to model the movement decisions of transhumants and their herds. Additionally, he developed a real-time monitoring system for transhumant herds based on discrete mathematics. His doctoral research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).

Before pursuing his PhD,Cheick obtained both a master’s and a bachelor’s degree in mathematics from Nazi Boni University in Burkina Faso. During his studies, he developed a rectangular grid for image processing and applied the Hough transform to detect discrete lines. His master’s and bachelor’s degrees were funded by the Burkinabe government.

Currently,Cheick is an Assistant Professor at the Institute of Computer Engineering and Telecommunications at the Polytechnic School of Ouagadougou. In addition to his role in student training, he is working on integrating viability theory with agent-based modeling to address sustainable development challenges in rapidly changing and complex socio-economic systems. His research has been published in several renowned conferences and scientific journals, and he continues to actively contribute to the fields of complex systems modeling and image processing.

Agent Based Modeling, Machine Learnig, Deep Learning, Numerical Analysis

Marco Janssen Member since: Thu, May 10, 2007 at 12:56 AM Full Member Reviewer

M.A., Econometrics and Operations Research, March, Erasmus University, Rotterdam, PhD., Mathematics, 29 November, Maastricht University (Supervisors: J. Rotmans and O.J. Vrieze)

I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.

Firouzeh Taghikhah Member since: Mon, Nov 18, 2019 at 09:41 PM Full Member

  • System modelling of behavior change
  • Socio-environmental systems for sustainable development
  • Life cycle analysis
  • Serious games for sustainable future
  • Food preferences
  • Agricultural economics

O Holland Member since: Fri, Aug 28, 2009 at 12:13 PM

Ph.D. Modeling & Simulation, M.S. Electrical Engineering, B.S. Electrical Engineering

Simulation of emergent behavior systems and metrics associated with the detection and characterization of emergent phenomena.

Cristina Montañola-Sales Member since: Fri, Sep 14, 2018 at 09:40 AM Full Member

Cristina Montañola Sales is an assistant professor at Institut Químic de Sarrià in Ramon Llull University, where she teaches subjects in ICT and statistics. She holds a PhD in Statistics and Operations Research and specializes in the investigation of novel quantitative methods for studying human behavior, such as agent-based models and spatio-temporal analysis. Her interdisciplinary research combines mathematics with social sciences, biomedicine and High-Performance Computing. She has studied various contexts, such as the dynamics of mobility of Gambian emigrants, demographic forecasting in South Korea, and ecological resilience of hunter-gatherers in India. Her research on tuberculosis transmissions and COVID-19 has advanced knowledge in epidemics, demographic dynamics and computational statistics. She has published articles and participated in international projects on simulation, parallel computing and global health.

validation, computer performace, epidemics, demography

Paul Van Liedekerke Member since: Thu, May 31, 2018 at 02:38 PM

Interested in numerical models and new conceptual ideas, applications from industry to medicine.

I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.

I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.

The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).

Jorge Garcia Member since: Sat, Jul 01, 2017 at 02:45 AM

Bachelor's in Industrial Management, Master of Science (Operations Research)

Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

Bruno Bonté Member since: Mon, Feb 13, 2017 at 09:44 AM Full Member

PhD in Computer Science applied to Modelling and Simulation, University of Montpellier 2, Master degree in Computer Science applied to Artificial Intelligence and Decision in Paris 6 University of Pierre and Marie Curry

Master Degree

I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).

PhD

Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.

Post-Doc

From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).

G-EAU

Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.

My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.

Jaehyun Song Member since: Sun, Jan 15, 2017 at 08:39 AM

Ph.D. Candidate in Political Science, Master of Political Science

Voting Behavior

Displaying 10 of 43 results behavior clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept