Community

Displaying 10 of 20 results performance clear search

Francesc Bellaubi Member since: Thu, Jun 27, 2013 at 03:40 PM

PhD candidate

performance of urban water service provision, high levels of inequities and inefficiency persist. In terms of water distribution and cost, these undesirable patterns have a high impact on peri-urban areas usually populated by marginalized and poor populations. The high levels of Non-Revenue Water (NRW), together with the existence of corrupt practices and mismanagement of water utilities, remain a highly controversial issue.

This situation confronts rent-seeking theory directly, explaining the performance-corruption relationship (Repetto, 1986). The presumption is that low performance in water supply service provision results from corruption because rent-seeking occurs. Hence, the implementation of performance-oriented reforms in the water supply sector, such as regulation or private sector participation, will reduce corruption, increasing the efficiency of water service provision. Nevertheless, latest evidence shows that “key elements of good political governance have a positive effect on the access to water services in developing countries. In turn, private sector participation has little influence other than increasing internal efficiency of water providers” (Krausse, 2009).

Indeed the relation between governance, corruption and performance seems to be more complex than theory wants to acknowledge. It must be reviewed further than a simple cause-effect relationship. It appears that poor management of water utilities, evidenced by high levels of NRW, justifies new investments. Such practices can be encouraged by an “opportunistic management”, whilst at the same time maintaining an influential “hydrocratic elite” in the sphere of water control.

The present research proposal aims to understand the relation between mismanagement and corruption of water control practices in water supply service provision. The research examines how this relationship affects the performance of water service provision and relates to water supply governance models at municipal peri-urban level in three African countries.

To understand the mismanagement-corruption relationship, we look at different case studies of water supply service provision in Senegal, Ghana and Kenya. Each case represents a different governance model in terms of management practices, institutional and organizational settings, and the actors in place, which affects the performance of water service provision in terms of allocative efficiency and access to water (equity). Whether regulation, decentralization and private sector participation constitute possible ways to reduce corruption is examined in the context of water sector reform.

In a second step, we propose a theoretical model based on Agent Based Modelling (ABM) (Pahl-Wostl, 2007) to reproduce complex social networks under a Socio-Ecological System (SES) framework approach. The model will allow us to test whether collaborative governance in the form of collective action in a participatory and negotiated decision-making process for water control, can reduce corruption and increase performance.

The present research benefits from the project “Transparency and Integrity in Service Delivery in Sub-Saharan Africa”. This project, carried out by Transparency International (TI) in 8 Sub-Saharan countries, aims to increase access to education, health and water by improving transparency and integrity in basic service delivery. The proposal retains focus on Senegal, Ghana and Kenya in the water sector.

Key words: water control, mismanagement, corruption, performance, collaborative governance, modelling, collective action, negotiation, participation

Leigh Tesfatsion Member since: Wed, Aug 28, 2013 at 12:50 AM

Ph.D., Economics, University of Minnesota, Mpls., B.A., History Major, Carleton College, Northfield, MN

Leigh Tesfatsion received the Ph.D. degree in economics from the University of Minnesota, Mpls., in 1975, with a minor in mathematics. She is Research Professor of Economics, Professor Emerita of Economics, and Courtesy Research Professor of Electrical & Computer Engineering, all at Iowa State University. Her principal current research areas are electric power market design and the development of Agent-based Computational Economics (ACE) platforms for the performance testing of these designs. She is the recipient of the 2020 David A. Kendrick Distinguished Service Award from the Society for Computational Economics (SCE) and an IEEE Senior Member. She has served as guest editor and associate editor for a number of journals, including the IEEE Transactions on Power Systems, the IEEE Transactions on Evolutionary Computation, the Journal of Energy Markets, the Journal of Economic Dynamics and Control, the Journal of Public Economic Theory, and Computational Economics. Online Short Bio

Agent-based computational economics (ACE); development and use of ACE test beds for the study of electric power market operations; development and use of ACE test beds for the study of water, energy, and climate change

Xavier Rubio-Campillo Member since: Mon, Nov 18, 2013 at 12:49 PM

Computer Science, PhD in Heritage Studies

My interests are focused on the development of new methodologies capable of exploring the complex relations between time, space and human behavior. Simulation, game theory and spatial analysis are some of the techniques that I use to explore different research questions, from the relation between environment and culture to the evolution of warfare.
I’m also the project manager of Pandora, an open-source ABM platform specifically designed for executing large scale simulations in High-Performance Computing environments.

Sae Schatz Member since: Tue, Nov 04, 2014 at 12:11 AM

Modeling and Simulation, Ph.D., Modeling and Simulation, M.S., Computer Information Technology, B.S.

Sae Schatz, Ph.D., is an applied human–systems researcher, professional facilitator, and cognitive scientist. Her work focuses on human–systems integration (HSI), with an emphasis on human cognition and learning, instructional technologies, adaptive systems, human performance assessment, and modeling and simulation (M&S). Frequently, her work seeks to enhance individual’s higher-order cognitive skills (i.e., the mental, emotional, and relational skills associated with “cognitive readiness”).

Andrea Ceschi Member since: Mon, Jan 12, 2015 at 06:33 PM Full Member

Ph.D.

Senior (Tenure-Track) Assistant Professor in Work and Organizational Psychology (WOP) at the Human Sciences Department of Verona University. My expertise lies in organizational behavior, individual differences and decision-making at work, and social dynamics in the applied psychology field. In the field of fundamental research my studies explore the role of individual antecedents (e.g., Personality traits, Risk attitudes, etc.) in relation to classic I/O models (e.g., Job Demands-Resources model, Effort-Reward model, etc.). My applied research focuses on the development of interventions and policies for enhancing decision-making, and in turn well-being and job performance. Finally, in industrial research, my research aims to better integrate cognitive and behavioral theories (e.g., Theory of Planned Behavior, Prospect theory, etc.) for designing predictive models – based on agents – of social and organizational behaviors.

Gunnar Dressler Member since: Mon, Feb 22, 2016 at 10:32 PM Full Member

PhD Applied Systems Science, Dipl. Biomathematics
  • since April 2017: PostDoc at the Department of Ecological Modeling, Helmholtz Centre for Environmental Research - UFZ
  • since January 2015: Member of the Junior Research Group POLISES - Global food security policies and their social-ecological side effects in regions prone to global change.
  • 2012-2017 PhD student at the Department of Ecological Modeling, Helmholtz Centre for Environmental Research - UFZ
  • 2006-2011 Diploma in Biomathematics, Ernst-Moritz-Arndt-University of Greifswald
  1. Dynamics of socio-ecological resource use systems
    • Pasture use in dryland grazing systems under change, effects of new technologies and policy instruments, emergence of polarization between pastoralists (e.g. in terms of livestock numbers).
    • Thresholds of disaster management performance under change, loss of manpower, the role of information as critical resource.
  2. Human decision making in agent-based models.
  3. Remote sensing and GIS.

S Gym Member since: Wed, Mar 09, 2016 at 10:09 PM

Compuer Engineer, Master in Computer Science Student

This paper investigates how collective action is affected when the interaction is driven by the underlying hierarchical structure of an organization, e.g., a company. The performance of collection action is measured as the rate of contribution to a public good, e.g., an organization’s objective.

Tom Briggs Member since: Tue, Dec 13, 2016 at 04:00 PM Full Member

PhD, Computational Social Science, George Mason University

Department of Computational and Data Sciences
George Mason University
Fairfax, VA, USA

I use ABM to study organizations, leadership, employee behavior and performance, and the social/psychological theories addressing workplace behavior and outcomes.

I have also used ABM to explore mass violence, active shooters, and mass shootings, including the spread of mass violence and its antecedents.

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

Doug Salt Member since: Wed, Dec 06, 2017 at 06:03 PM Full Member

PhD, BSc (Hons)

I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.

It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.

Displaying 10 of 20 results performance clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept