Computational Model Library

This NetLogo model illustrates the cultural evolution of pro-environmental behaviour patterns. It illustrates how collective behaviour patterns evolve from interactions between agents and agents (in a social network) as well as agents and the affordances (action opportunities provided by the environment) within a niche. More specifically, the cultural evolution of behaviour patterns is understood in this model as a product of:

  1. The landscape of affordances provided by the material environment,
  2. Individual learning and habituation,
  3. Social learning and network structure,
  4. Personal states (such as habits and attitudes), and

Mobility USA (MUSA)

Davide Natalini Giangiacomo Bravo | Published Sun Dec 8 19:24:09 2013 | Last modified Mon Dec 30 19:22:17 2013

MUSA is an ABM that simulates the commuting sector in USA. A multilevel validation was implemented. Social network with a social-circle structure included. Two types of policies have been tested: market-based and preference-change.

TransportVarese

Elena Maggi Elena Vallino | Published Tue Jan 31 16:04:05 2017 | Last modified Fri Aug 4 15:48:28 2017

This ABM deals with commuting choices in the Italian city of Varese. Empirical data inform agents’ attitudes and modal choices costs and emissions. We evaluate ex ante the impact of policies for less polluting commuting choices.

01a ModEco V2.05 – Model Economies – In C++

Garvin Boyle | Published Mon Feb 4 02:02:53 2013 | Last modified Fri Apr 14 00:43:12 2017

Perpetual Motion Machine - A simple economy that operates at both a biophysical and economic level, and is sustainable. The goal: to determine the necessary and sufficient conditions of sustainability, and the attendant necessary trade-offs.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.