Community

B Eaton Member since: Tuesday, July 14, 2015

BSc Biology, MSc Ecosystem Management

I’m modelling LandUse and Cover Changes, Biodiversity impact and Biological corridors for Surrogate Species shared by US and Mexico.

Jacob Nabe-Nielsen Member since: Tuesday, August 27, 2019 Full Member

My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.

Randall Boone Member since: Thursday, November 21, 2013

M.S., Ph.D.

My experience is diverse, with research in spatial analyses and GIS, ecosystem modeling, landscape ecology, database management, biogeographical relationships of birds and plants, species/habitat relationships, wildlife and pastoral livestock mobility, spectroscopy, cluster analysis, and telemetry techniques. Research projects are ongoing in Colorado, the contiguous US, Kenya, Mali, and Tibet.

Christopher Hoving Member since: Monday, May 06, 2019

B.S. Fish and Wildlife, Michigan State University, M.S. Wildlife Ecology, University of Maine - Orono

B.S. in Fish and Wildlife from Michigan State University in 1996. M.S. in Wildlife Ecology from the University of Maine - Orono in 2001. Employed by the Michigan Department of Natural Resources since 2003, first as a field biologist (2003-2008), then statewide endangered species coordinator (2008-2012), and currently as the statewide (climate) adaptation program lead (2012-present). Also currently a graduate student in the Boone and Crockett Quantitative Wildlife Center at Michigan State University (2015-present). Father, gardener, hiker, and amateur myxomycologist.

Human-wildlife social-ecological systems, resilience and learning in complex adaptive systems, climate change, disturbance ecology, and historical ecology

Audrey Lustig Member since: Thursday, July 18, 2013

PhD Candidate - Ecological Modelling and complex system - Lincoln University, New Zealand, Master's in computer science and modelling complex systems - ENS Lyon, France, Bioinformatics and Modeling Engineering - INSA Lyon, France

I am strongly interested in ecological modeling and complex system and truly enjoyed working with a variety of tools to uncover patterns in empirical data and explore their ecological and evolutionary consequences. My primary research is to conduct research in the field of ‘ecological complexity’, including the development of appropriate descriptive measure to quantify the structural, spatial and temporal complexity of ecosystem and the identification of the mechanism that generate this complexity, through modeling and field studies.
Currently investigated is how biological characteristics of invasive species (dispersal strategies and demographic processes) interact with abiotic variables and resource distribution to determine establishment success and spread in a complex heterogeneous environment (Individual based modelling integrated with GIS technologies).

Kristin Crouse Member since: Sunday, June 05, 2016 Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology

I am a PhD Candidate in the Biological Anthropology program at the University of Minnesota. My research involves using agent-based models combined with field research to test a broad range of hypotheses in biology. I have created a model, B3GET, which simulates the evolution of virtual organisms to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I also conduct field research to better model the behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in writing agent-based models for both research in and the teaching of subjects including: biology, genetics, evolution, demography, and behavior.

For my dissertation research, I have developed “B3GET,” an agent-based model which simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in body size, variation in aggression, sperm competition, infanticide, and competition over access to food and mates. B3GET calculates each agent’s ‘decision-vectors’ from its diploid chromosomes and current environmental context. These decision-vectors dictate movement, body growth, desire to mate and eat, and other agent actions. Chromosomes are modified during recombination and mutation, resulting in behavioral strategies that evolve over generations. Rather than impose model parameters based on a priori assumptions, I have used an experimental evolution procedure to evolve traits that enabled populations to persist. Seeding a succession of populations with the longest surviving genotype from each run resulted in the evolution of populations that persisted indefinitely. I designed B3GET for my dissertation, but it has an indefinite number of applications for other projects in biology. B3GET helps answer fundamental questions in evolutionary biology by offering users a virtual field site to precisely track the evolution of organismal populations. Researchers can use B3GET to: (1) investigate how populations vary in response to ecological pressures; (2) trace evolutionary histories over indefinite time scales and generations; (3) track an individual for every moment of their life from conception to post-mortem decay; and (4) create virtual analogues of living species, including primates like baboons and chimpanzees, to answer species-specific questions. Users are able to save, edit, and import population and genotype files, offering an array of possibilities for creating controlled biological experiments.

Anthony Di Fiore Member since: Friday, August 24, 2012 Full Member Reviewer

Ph.D. Biological Anthropology

Primate evolutionary biologist and geneticist at the University of Texas at Austin

I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.

I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.

Steve Peck Member since: Friday, April 24, 2020 Full Member

Biographical Sketch

(a) Professional Preparation

Brigham Young University Statistics & Computer Science B.S. 1986
University of North Carolina Chapel Hill Biostatistics M.S. 1988
North Carolina State University Biomathematics & Entomology Ph.D. 1997

(b) Appointments

Associate Professor 2006-current: Brigham Young University Department of Biology
Assistant Professor 2000-2006: Brigham Young University Department of Integrative Biology
Research Scientist 1997-1999: Agriculture Research Service-USDA Pacific Basin Agricultural Research Center.

(c) Publications

i. Five most relevant publications

Ahmadou H. Dicko, Renaud Lancelot, Momar Talla Seck, Laure Guerrini, Baba Sall, Mbargou Low, Marc J.B. Vreysen, Thierry Lefrançois, Fonta Williams, Steven L. Peck, and Jérémy Bouyer. 2014. Using species distribution models to optimize vector control: the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Science. 11 (28) : 10149-10154
Peck, S. L. 2014. Perspectives on why digital ecologies matter: Combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests. Acta Tropica. 138S (2014) S22–S25
Peck, S. L. and Jérémy Bouyer. 2012. Mathematical modeling, spatial complexity, and critical decisions in tsetse control. Journal of Economic Entomology 105(5): 1477—1486.
Peck, S. L. 2012. Networks of habitat patches in tsetse fly control: implications of metapopulation structure on assessing local extinction probabilities. Ecological Modelling 246: 99–102.
Peck, S. L. 2012. Agent-based models as fictive instantiations of ecological processes.” Philosophy & Theory in Biology. Vol. 4.e303 (2012): 12

ii. Five other publications of note

Peck, S. L. 2008. The Hermeneutics of Ecological Simulation. Biology and Philosophy 23:383-402.
K.M. Froerer, S.L. Peck, G.T. McQuate, R.I. Vargas, E.B. Jang, and D.O. McInnis. 2010. Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go? American Entomologist 56(2): 88-94
Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends in Ecology and Evolution 19 (10): 530 534
Storer N.P., S. L. Peck, F. Gould, J. W. Van Duyn and G. G. Kennedy. 2003 Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Economic Entomology. 96(1): 173-187
Peck, S. L., F. Gould, and S. Ellner. 1999. The spread of resistance in spatially extended systems of transgenic cotton: Implications for the management of Heliothis virescens (Lepidoptera: Noctuidae). Economic Entomology 92:1-16.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.