As publically funded science has become increasingly complex, the policy and management literature has begun to focus more attention on how science is structured and organized. My research interests reside at the nexus of science and technology policy, organizational theory, and complexity theory—I am interested in how the management and organization of S&T research influences the implementation of policies and the emergence of organizational strategies and innovation. Although my research involves the use of multiple qualitative and quantitative methods, I rely heavily on agent based modeling and system dynamics approaches in addressing my research questions.
Elizabeth Hunter received a BA in Mathematics and Economics at Boston University in 2011. She worked as a health economics researcher at Research Triangle Institute for three years where she worked on a team that developed the risk adjustment models for the US health insurance exchanges. She attended the University of Limerick and received an MSc in Mathematical Modelling in 2015. She completed a PhD at Technological University Dublin. Her PhD research focuses on agent-based simulations for infectious disease epidemiology with the goal of creating an agent-based simulation of Ireland. Elizabeth is currently working on the Precise4Q as a Postdoctoral researcher working on predictive modelling in stroke.
Researcher in social simulation or Computational social scientists
in LISC (Inrae), and associate researcher in LAPSCO (UCA) https://www.lapsco.fr/HUET-Sylvie.html
I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).
My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).
Senior (Tenure-Track) Assistant Professor in Work and Organizational Psychology (WOP) at the Human Sciences Department of Verona University. My expertise lies in organizational behavior, individual differences and decision-making at work, and social dynamics in the applied psychology field. In the field of fundamental research my studies explore the role of individual antecedents (e.g., Personality traits, Risk attitudes, etc.) in relation to classic I/O models (e.g., Job Demands-Resources model, Effort-Reward model, etc.). My applied research focuses on the development of interventions and policies for enhancing decision-making, and in turn well-being and job performance. Finally, in industrial research, my research aims to better integrate cognitive and behavioral theories (e.g., Theory of Planned Behavior, Prospect theory, etc.) for designing predictive models – based on agents – of social and organizational behaviors.
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.
Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.
I am currently a Senior Lecturer in Computational Epidemiology at Western Sydney University, School of Computer, Data and Mathematical Science where I am also a member of Translational Health Research Institute (THRI). I am a research associate at the Brain and Mind Centre, Sydney University and Adjunct Senior Lecturer at Psychiatry Monash Health, Monash University.
My work is in the areas of dynamic data-driven computer simulation and systems science. The product of my work is decision and research support software that applies agent and discrete event based models, and metaprogramming techniques to solve complex problems.
I am currently Chief Investigator (CI) on an international grant funded by Botnar foundation as well as on a MRFF funded grant with Brain and Mind Centre, The University of Sydney and an Associate Investigator (AI) on Suicide Prevention Australia funded research at The University of Melbourne. In he last 5 years I have been CI on 7 grants and commissioned research projects and AI on 1 grant with total value of over $8 million AUD.
Agent based modelling and simulation.
Mental heath and wellbeing.
Did some work in Multi-agent modeling for inventory routing problem using JADE. doing Research application Multi-agent modeling in Supply chain management with Internet of Things, Networked manufacturing