Angelos Chliaoutakis received his PhD in Electronic & Computer Engineering in 2020 at Technical University of Crete (TUC), Greece. During 2005-2020 he was a research assistant at the Intelligent Systems Laboratory of TUC, participating in several research projects associated with NLP, semantic similarity and ontology based information systems. Since 2010 he is also a research assistant at the Laboratory of Geophysical - Satellite Remote Sensing and Archaeo-environment (GeoSat ReSeArch Lab) of the Institute for Mediterranean Studies of Foundation for Research and Technology (IMS-FORTH), were he is involved in various research projects related to the full-stack development of Geographical Information Systems (GIS), web-based GIS applications and Geoinformatics in the cultural and archaeological domain. This ultimately transformed his interest and research direction towards computational archaeology, in particular, agent-based modeling and simulation, while intertwining ideas and approaches from Artificial Intelligence, Multi-agent Systems and GIS.
Research activities range between Computer Science, Information Systems and Natural Language Processing (NLP), Agent-based modeling/simulation (ABM), Artificial Intelligence (AI) and Multi-Agent Systems (MAS) and Geographical Information Science (GIScience).
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
Flood Risk Management, Coupled Human-Natural System Modelling, Socio-hydrological Modelling, Agent-Based Modelling, Human Behaviour Modelling, Agent-Based Social Simulation, Hydrological and Hydraulic Modeling, Geographic Information Systems (GIS), Mapping, Risk Modelling and Risk Visualization, Disaster Risk Reduction
GIS enthusiast and ABM practitioner
Urban Mobility
Machine Learning
Social Network Analysis
Crime Simulation
I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.
Dr. Dawn Parker is a professor at the University of Waterloo in the School of Planning. Her research focuses on the development of integrated socio-economic and biophysical models of land-use change. Dr. Parker works with agent-based modeling, complexity theory, geographic information systems, and environmental and resource economics. Her current ongoing projects include Waterloo Area Regional Model (WARM) Urban intensification vs. suburban flight, a SSHRC funded development grant that explores the causal relationships between light rail transit and core-area intensification, and the Digging into Data MIRACLE (Mining relationships among variables in large datasets from complex systems) project.