Community

Angelos Chliaoutakis Member since: Thursday, March 26, 2020

Ph.D., Computer Engineering, Technical University of Crete, Greece

Angelos Chliaoutakis received his PhD in Electronic & Computer Engineering in 2020 at Technical University of Crete (TUC), Greece. During 2005-2020 he was a research assistant at the Intelligent Systems Laboratory of TUC, participating in several research projects associated with NLP, semantic similarity and ontology based information systems. Since 2010 he is also a research assistant at the Laboratory of Geophysical - Satellite Remote Sensing and Archaeo-environment (GeoSat ReSeArch Lab) of the Institute for Mediterranean Studies of Foundation for Research and Technology (IMS-FORTH), were he is involved in various research projects related to the full-stack development of Geographical Information Systems (GIS), web-based GIS applications and Geoinformatics in the cultural and archaeological domain. This ultimately transformed his interest and research direction towards computational archaeology, in particular, agent-based modeling and simulation, while intertwining ideas and approaches from Artificial Intelligence, Multi-agent Systems and GIS.

Research activities range between Computer Science, Information Systems and Natural Language Processing (NLP), Agent-based modeling/simulation (ABM), Artificial Intelligence (AI) and Multi-Agent Systems (MAS) and Geographical Information Science (GIScience).

Nathaniel Henry Member since: Tuesday, October 11, 2016

Bachelor of Science in Geographic Information Systems

William Rand Member since: Wednesday, October 24, 2007 Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

Javed Ali Member since: Monday, December 17, 2018 Full Member

Flood Risk Management, Coupled Human-Natural System Modelling, Socio-hydrological Modelling, Agent-Based Modelling, Human Behaviour Modelling, Agent-Based Social Simulation, Hydrological and Hydraulic Modeling, Geographic Information Systems (GIS), Mapping, Risk Modelling and Risk Visualization, Disaster Risk Reduction

Eo SeungWon Member since: Thursday, August 03, 2017 Full Member Reviewer

B.A. Urban Studies, UC Berkeley., MSc. Geographic Information Science, Seoul National University.

GIS enthusiast and ABM practitioner

Urban Mobility
Machine Learning
Social Network Analysis
Crime Simulation

Jackie Lipphardt Member since: Friday, September 12, 2014

BS, Anthropological Sciences, (in progress), BS, Geographic Information Sciences

Oscar Montes De Oca Member since: Monday, September 09, 2013 Full Member Reviewer

Masters of Applied Science, Massey University, New Zealand, Diploma in Manufacturing, ITESM, Mexico, Bachelors in Industrial Engineering, ITESM, Mexico

I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.

Liliana Perez Member since: Thursday, October 11, 2018 Full Member

B.Eng, Geomatics, Distrital University, Colombia, MSc., Geography, UPTC, Colombia, Ph.D., Geography, Simon Fraser University, Canada

My initial training was in cadastre and geodesy (B.Eng from the Distrital University, UD, Colombia). After earning my Master’s degree in Geography (UPTC, Colombia) in 2003, I worked for the “José Benito Vives de Andreis” marine and coastal research institute (INVEMAR) and for the International Center for Tropical Agriculture (CIAT). Three years later, in 2006, I left Colombia to come to Canada, where I began a PhD in Geography with a specialization in modelling complex systems at Simon Fraser University (SFU), under the direction of Dr. Suzana Dragicevic (SAMLab). In my dissertation I examined the topic of spatial and temporal modelling of insect epidemics and their complex behaviours. After obtaining my PhD in 2011, I began postdoctoral studies at the University of British Columbia (2011) and the University of Victoria (2011-2013), where I worked on issues concerning the spatial and temporal relationships between changes in indirect indicators of biodiversity and climate change.

My research interest is to learn more about spatial and temporal interactions and relationships driving changes in our world. Spatial analysis and modelling and geographic information systems (GIS) can provide insights into complex problems such as climate change, landscape ecology and forestry by explicitly representing phenomena in their geographic context. My research focuses on the multidisciplinary nature of geographical information science (GIScience) to investigate the relationships between ecological processes and resulting spatial patterns.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.