Displaying 10 of 22 results computational social science clear

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member Reviewer

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

John Murphy Member since: Wed, Aug 31, 2011 at 11:48 AM Full Member Reviewer

PhD. Anthropology, University of Arizona (2009), MA Education, Ohio State University (1993)

My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.

Tom Briggs Member since: Tue, Dec 13, 2016 at 04:00 PM Full Member Reviewer

PhD, Computational Social Science, George Mason University

Department of Computational and Data Sciences
George Mason University
Fairfax, VA, USA

I use ABM to study organizations, leadership, employee behavior and performance, and the social/psychological theories addressing workplace behavior and outcomes.

I have also used ABM to explore mass violence, active shooters, and mass shootings, including the spread of mass violence and its antecedents.

Farzaneh Davari Member since: Tue, Oct 09, 2018 at 12:18 PM Full Member

Farzaneh Davari is a social science researcher who has worked in many diverse fields, including agriculture, conflict, health, and human rights, just to name a few. Currently, she is a Ph.D. candidate in Computational Social Science, focusing on social-ecological complex systems and applying computational science and Agent-Based Modeling to understand resilience procedure through self-organizing and learning. Meanwhile, she is a designer and instructor of the online graduate level course of Decision-making in Complex Environments in Virginia Tech.

Social-ecological complex system, resilience-building, conflictual environment

Manuel Castañón-Puga Member since: Wed, Oct 16, 2019 at 10:50 PM Full Member

Ph.D. Computer Science, Universidad Autónoma de Baja California, México., MSC Computer Science, Tecnológico Nacional de México, México., ENG Industrial, Tecnológico Nacional de México, México.

I´m a full Professor at the Universidad Autónoma de Baja California in Mexico. I teach computer sciences and software engineering in graduate and undergraduate academic programs.

  • Computational science
  • Computational social science
  • Social-inspired ICT
  • Social computation
  • Agents technology
  • Computational intelligence and hybrid-intelligent agents
  • Complexity and complex systems
  • Multi-agent systems
  • Computational modeling
  • Context-oriented programming
  • Knowledge Management
  • Software engineering

Andrew Crooks Member since: Mon, Feb 09, 2009 at 08:11 PM Full Member

Andrew Crooks is an Associate Professor with a joint appointment between the Computational Social Science Program within the Department of Computational and Data Sciences and the Department of Geography and GeoInformation Science, which are part of the College of Science at George Mason University. His areas of expertise specifically relate to integrating agent-based modeling (ABM) and geographic information systems (GIS) to explore human behavior. Moreover, his research focuses on exploring and understanding the natural and socio-economic environments specifically urban areas using GIS, spatial analysis, social network analysis (SNA), Web 2.0 technologies and ABM methodologies.

GIS, Agent-based modeling, social network analysis

Brent Auble Member since: Fri, Dec 17, 2010 at 02:31 AM

B.S. Computer Science, Lafayette College, MAIS, Computational Social Science, George Mason University

Dissertation: Narrative Generation for Agent-Based Models

Abstract: This dissertation proposes a four-level framework for thinking about having agent-based models (ABM) generate narrative describing their behavior, and then provides examples of models that generate narrative at each of those levels. In addition, “interesting” agents are identified in order to direct the attention of researchers to the narratives most likely to be worth spending their time reviewing. The focus is on developing techniques for generating narrative based on agent actions and behavior, on techniques for generating narrative describing aggregate model behavior, and on techniques for identifying “interesting” agents. Examples of each of these techniques are provided in two different ABMs, Zero-Intelligence Traders (Gode & Sunder, 1993, 1997) and Sugarscape (Epstein & Axtell, 1996).

Julia Kasmire Member since: Wed, May 09, 2012 at 12:32 PM Full Member

MSc in Evolution of Language and Cognition, BA in Linguistics

About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.

Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence

Allen Lee Member since: Thu, May 10, 2007 at 12:13 AM Full Member Reviewer

MSc Computer Science and Informatics, Indiana University - Bloomington, BSc Computer Science, Indiana University - Bloomington

I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.

I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.

My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.

Flaminio Squazzoni Member since: Sun, Nov 07, 2010 at 09:20 AM Full Member

PhD. Assistant Professor of Economic Sociology

Flaminio Squazzoni is Full Professor of Sociology at the Department of Social and Political Sciences of the University of Milan and director of BEHAVE. He teaches “Sociology” to undergraduate students, “Behavioural Sociology” to master students and “Behavioural Game Theory” to PhD students. Untill November 2018, he has been Associate Professor of Economic Sociology at the Department of Economics and Management of the University of Brescia, where he led the GECS-Research Group on Experimental and Computational Sociology.

He is editor of JASSS-Journal of Artificial Societies and Social Simulation, co-editor of Sociologica -International Journal for Sociological Debate and member of the editorial boards of Research Integrity and Peer Review and Sistemi Intelligenti. He is advisory editor of the Wiley Series in Computational and Quantitative Social Science and the Springer Series in Computational Social Science and member of the advisory board of ING’s ThinkForward Initiative. He is former President of the European Social Simulation Association (Sept 2012/Sept 2016, since 2010 member of the Management Committee) and former Director of the NASP ESLS PhD Programme in Economic Sociology and Labour Studies (2015-2016).

His fields of research are behavioural sociology, economic sociology and sociology of science, with a particular interest on the effect of social norms and institutions on cooperation in decentralised, large-scale social systems. His research has a methodological focus, which lies in the intersection of experimental (lab) and computational (agent-based modelling) research.

Displaying 10 of 22 results computational social science clear

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.