References
Abdelnabi, S., Gomaa, A., Sivaprasad, S., Schönherr, L., & Fritz, M. (2023). Cooperation, competition, and maliciousness: LLM-stakeholders interactive negotiation. arXiv. https://doi.org/10.48550/arXiv.2309.17234
Albino, V., Carbonara, N., & Giannoccaro, I. (2003). Coordination mechanisms based on cooperation and competition within Industrial Districts: An agent-based computational approach. Journal of Artificial Societies and Social Simulation, 6(4). Recuperado de https://www.jasss.org/6/4/3.html
Arnejo, Z., Gaudou, B., Saqalli, M., & Bantayan, N. (2025). Communicating agent-based models to stakeholders: A scoping review. Journal of Artificial Societies and Social Simulation, 28(2). https://www.jasss.org/28/2/2.html
Aydoğan, R., Baarslag, T., Florijn, T. C. P., Fujita, K., Jonker, C. M., & Mohammad, Y. (2025). The Automated Negotiating Agents Competition (ANAC) 2024: Challenges and Results. En Proceedings of AAMAS 2025. IFAAMAS. https://www.ifaamas.org/Proceedings/aamas2025/pdfs/p3000.pdf
Barreteau, O., Bousquet, F., & Attonaty, J.-M. (2001). Role-playing games for opening the black box of multi-agent systems: Method and lessons of its application to Senegal River Valley irrigated systems. Journal of Artificial Societies and Social Simulation, 4(2). Recuperado de https://www.jasss.org/4/2/5.html
Barreteau, O., Le Page, C., & D’Aquino, P. (2003). Role-Playing Games, Models and Negotiation Processes: Part I. Journal of Artificial Societies and Social Simulation, 6(2). Recuperado de https://jasss.org/6/2/contents.html
Barreteau, O., et al. (2003). Classification of joint uses of RPG and models (post-normal science). Journal of Artificial Societies and Social Simulation, 6(2). (Nota: contenido citado en editorial). Recuperado de https://www.jasss.org/6/2/10.html
Betz, G. (2022). Natural-language multi-agent simulations of argumentative opinion dynamics. Journal of Artificial Societies and Social Simulation, 25(1), Article 2. https://doi.org/10.18564/jasss.4725
Bianchi, F., Chia, P. J., Yüksekgönül, M., Tagliabue, J., Jurafsky, D., & Zou, J. (2024). How well can LLMs negotiate? NegotiationArena platform and analysis. arXiv. https://doi.org/10.48550/arXiv.2402.05863
Biré, L., Phung, Q. N., Taillandier, P., Phung, D. A., Nguyen, N. D., & Drogoul, A. (2025). RÁC: A serious agent-based simulation game to drive discussion on waste management in Vietnamese irrigation systems. Journal of Artificial Societies and Social Simulation, 28(2). https://doi.org/10.18564/jasss.5617
Bordini, R., et al. (2004). MAS-SOC: Platform for multi-agent based social simulation. Journal of Artificial Societies and Social Simulation, 8(3). Recuperado de https://www.jasss.org/8/3/7.html
Chang, S., & Fujita, K. (2023). A scalable opponent model using Bayesian learning for automated bilateral multi-issue negotiation. En Proceedings of AAMAS 2023 (pp. 2487–2489). IFAAMAS. https://www.ifaamas.org/Proceedings/aamas2023/pdfs/p2487.pdf
Choi, M., & Yang, J.-S. (2024). Exploring the complexities of negotiation: Strategies for successful intra- and inter-team negotiation in organizations. Journal of Artificial Societies and Social Simulation, 27(3). https://www.jasss.org/27/3/4.html
Daré, W., & Barreteau, O. (2003). A role-playing game in irrigated system negotiation: Between play and reality. Journal of Artificial Societies and Social Simulation, 6(3). Recuperado de https://www.jasss.org/6/3/6.html
Delos Reyes, R., Lyons Keenan, H., & Zachreson, C. (2025). A microsimulation model of behaviour change calibrated to reversal learning data. Journal of Artificial Societies and Social Simulation, 28(1). https://www.jasss.org/28/1/contents.html
D’Aquino, P., Le Page, C., & Bousquet, F. (2003). Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: The SelfCormas Experiment in Senegal. Journal of Artificial Societies and Social Simulation, 6(3). Recuperado de https://jasss.soc.surrey.ac.uk/6/3/5.html
Feng, Y., & Li, S. (2024). A note on approximating weighted Nash social welfare with additive valuations. En ICALP 2024. Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.ICALP.2024.63
Florijn, T. C. P. (2024). Negotiation strategies for combining partial deals in one-to-many negotiations. En Proceedings of AAMAS 2024 (pp. 2734–2736). IFAAMAS. https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2734.pdf
Gao, K., et al. (2024). High-Frequency financial market simulation and flash crash scenarios analysis: An agent-based modelling approach. Journal of Artificial Societies and Social Simulation, 27. https://doi.org/10.18564/jasss.5403
Garg, J., Husić, E., Li, W., Végh, L. A., & Vondrák, J. (2023). Approximating Nash social welfare by matching and local search. En Proceedings of STOC 2023 (pp. 1298–1310). ACM. https://doi.org/10.1145/3564246.3585255
Guyot, P., & Honiden, S. (2006). Agent-based participatory simulations: Merging multi-agent systems and role-playing games. Journal of Artificial Societies and Social Simulation, 9(4). Recuperado de http://jasss.soc.surrey.ac.uk/9/4/8.html
Khatami, S., & Frantz, C. K. (2025). From concepts to model: Automating feature extraction of agent-based models using large language models. Journal of Artificial Societies and Social Simulation, 28(3). https://www.jasss.org/28/3/contents.html
Koça, T., de Jonge, D., & Baarslag, T. (2024). Search algorithms for automated negotiation in large domains. Annals of Mathematics and Artificial Intelligence, 92(7), 903–924. https://doi.org/10.1007/s10472-023-09859-w
Kwon, D., Weiss, E., Kulshrestha, T., Chawla, K., Lucas, G., & Gratch, J. (2024). Are LLMs effective negotiators? Systematic evaluation of large language models in strategic interactions. Findings of EMNLP 2024 (pp. 5391–5413). ACL. https://doi.org/10.18653/v1/2024.findings-emnlp.310
Lorig, F., & Norling, E. (Eds.). (2023). Multi-Agent-Based Simulation XXIII: 23rd International Workshop, MABS 2022 (Lecture Notes in Computer Science, Vol. 13743). Springer. https://doi.org/10.1007/978-3-031-22947-3
Maly, J., Rey, S., Endriss, U., & Lackner, M. (2023). Fairness in participatory budgeting via equality of resources. En Proceedings of AAMAS 2023 (pp. 2031–2039). IFAAMAS. https://www.ifaamas.org/Proceedings/aamas2023/pdfs/p2031.pdf
Ni, S., Feng, C., & Gou, H. (2023). Nash-bargaining fairness concerns under push and pull supply chains. Mathematics, 11(23), 4719. https://doi.org/10.3390/math11234719
Rachmilevitch, S. (2024). The Nash bargaining solution and utilitarian–egalitarian social welfare. Economics Letters, 235, 111958. https://doi.org/10.1016/j.econlet.2024.111958
Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges. (2023). In Studies in Computational Intelligence (Vol. 1092). Springer. https://doi.org/10.1007/978-981-99-0561-4
Renting, B. M., Hoos, H. H., & Jonker, C. M. (2022). Automated configuration and usage of strategy portfolios for bargaining. arXiv. https://doi.org/10.48550/arXiv.2212.10228
Rodríguez-Arias, A., Sánchez-Maroto, N., & Guijarro-Berdinas, B. (2025). Communication and negotiation to improve agent-based models. In Proceedings of the 17th International Conference on Agents and Artificial Intelligence. SCITEPRESS. https://www.scitepress.org/Papers/2025/133775/133775.pdf
Stern, A., Kraus, S., & Sarne, D. (2022). A negotiating strategy for a hybrid goal function in multilateral negotiation. arXiv. https://doi.org/10.48550/arXiv.2201.04126