Computational Model Library

The purpose of this curricular model is to teach students the basics of modeling complex systems using agent-based modeling. It is a simple SIR model that simulates how a disease spreads through a population as its members change from susceptible to infected to recovered and then back to susceptible. The dynamics of the model are such that there are multiple emergent outcomes depending on the parameter settings, initial conditions, and chance.

The curricular model can be used with the chapter Agent-Based Modeling in Mixed Methods Research (Moritz et al. 2022) in the Handbook of Teaching Qualitative & Mixed Methods (Ruth et al. 2022).

The instructional videos can be accessed on YouTube: Video 1 (; Video 2 (; and Video 3 (

Agent based model of COVID19 spread with digital contact tracing

Stefano Picascia Jonatan Almagor | Published Tue Sep 28 14:21:31 2021 | Last modified Wed Oct 13 10:44:20 2021

Multi-layer network agent-based model of the progression of the COVID19 infection, digital contact tracing

Our model is hybrid agent-based and equation based model for human air-borne infectious diseases measles. It follows an SEIR (susceptible, exposed,infected, and recovered) type compartmental model with the agents moving be-tween the four state relating to infectiousness. However, the disease model canswitch back and forth between agent-based and equation based depending onthe number of infected agents. Our society model is specific using the datato create a realistic synthetic population for a county in Ireland. The modelincludes transportation with agents moving between their current location anddesired destination using predetermined destinations or destinations selectedusing a gravity model.

Diffusion dynamics in small-world networks with heterogeneous consumers

Sebastiano Delre | Published Sat Sep 10 10:38:57 2011 | Last modified Sat Apr 27 20:18:30 2013

This model simulates diffusion curves and it allows to test how social influence, network structure and consumer heterogeneity affect their spreads and their speeds.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.