Displaying 10 of 85 results computer science clear search
I am an Assistant Professor at the School of Computer Science, University of Nottingham, UK.
My main research interest is the application of computer simulation to study human-centric complex adaptive systems. I am a strong advocate of Object Oriented Agent-Based Social Simulation. This is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Operations Research, Geography, and Computer Science. My current research focusses on Urban Sustainability and I am a co-investigator in several related projects and a member of the university’s “Sustainable and Resilient Cities” Research Priority Area management team.
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
Social Computing particularly on data mining tweets, blogs, social networking sites for disaster events.
I received a Ph.D. in Economics at the University of Namur (Belgium) in June 2012 with a thesis titled “Essays in Information Aggregation and Political Economics”.
After two years at the Research Center for Educational and Network Studies (Recens) of the Hungarian Academy of Sciences, I joined the Department of Economics “Marco Biagi” of the University of Modena and Reggio Emilia in January 2015 and then the Department of Agricultural and Food Sciences of the University of Bologna.
I am currently a Lecturer in Financial Computing at the Department Computer Science (Financial Computing and Analytics group) - University College London. Moreover I am an affiliated researcher of the DYNAMETS - Dynamic Systems Analysis for Economic Theory and Society research group and an affiliate member of the Namur Center for Complex Systems (Naxys).
My research interests concern the computational study of financial markets (microstructure, systemic properties and behavioral bias), of social Interactions on complex networks (theory and experiments), the evolution of cooperation in networks (theory and experiments) and the study of companies strategies in the digital economy.
I am a Reader in the Centre for Health Economics, conducting interdisciplinary research aimed at tackling healthcare challenges and improving decision-making and implementation in healthcare policy. My research is centred around using systems thinking and modelling approaches in health economics evaluation and draws on tools and methods from mathematical epidemiology, economics, management science, and computer science, among other fields.
My main body of work involves systems modelling and simulation, and it involves integrating disease and economic models for policy impact evaluation and prioritisation. I am interested in both infectious disease and non-communicable disease modelling. From a methodological standpoint, I am particularly interested in strengthening rigour in agent-based modelling and hybrid models, which integrate modelling methods when this simplifies analyses. I have applied my research to studying and conducting knowledge-exchange activities addressing global health challenges. This includes conducting healthcare intervention and policy evaluations, studying health systems strengthening in low- and middle-income countries, studying antimicrobial resistance policy globally and in the UK, evaluating COVID-19 policy and interventions, investigating how behaviour and social structure affect health and diseases, and exploring the role of incentives in healthcare policy design.
I hold a PhD in Management Science, specialising in modelling for healthcare policy, from the University of Strathclyde and an MA in economics and BA honours economics from McGill University, in Montreal.
Currently working on Agent Based Demography.
PhD student in Computer Science at the University of Newcastle, Australia
I’ve been building cyberinfrastructure and research software for computational social science and the study of complex adaptive systems at Arizona State University since 2006. Past and current projects include the Digital Archaeological Record, the Virtual Commons, the Social Ecological Systems Library, Synthesizing Knowledge of Past Environments (SKOPE), the Port of Mars, and CoMSES Net, where I serve as co-director and technical lead.
I also work to improve the state of open, transparent, reusable, and reproducible computational science as a Carpentries instructor and maintainer for the Plotting and Programming in Python and Good Enough Practices for Scientific Computing lessons, currently co-chair the Consortium of Scientific Software Registries and Repositories and Open Modeling Foundation Cyberinfrastructure Working Group, and serve on the DataCite Services and Technology Steering Group and CSDMS’s Basic Model Interface open source governance council.
My research interests include collective action, social ecological systems, large-scale software systems engineering, model componentization and coupling, and finding effective ways to promote and facilitate good software engineering practices for reusable, reproducible, and interoperable scientific computation.
Displaying 10 of 85 results computer science clear search