Community

Giovanna Sissa Member since: Thursday, January 05, 2012 Full Member Reviewer

PhD in Computer Science

Agent Based Modelling of energy consumer’s awareness diffusion. Role of smart metering in energy consumption. Social norm as limiting factor against rebound effects. Role of behavioral changes in energy efficiency.

Bernardo Furtado Member since: Monday, January 27, 2014 Full Member

PhD Geosciences/Economics, MsC Geography, BA Architecture

Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb

Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.

William Rand Member since: Wednesday, October 24, 2007 Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

Jorge Garcia Member since: Saturday, July 01, 2017

Bachelor's in Industrial Management, Master of Science (Operations Research)

Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.

Kristin Crouse Member since: Sunday, June 05, 2016 Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology

I am a PhD Candidate in the Biological Anthropology program at the University of Minnesota. My research involves using agent-based models combined with field research to test a broad range of hypotheses in biology. I have created a model, B3GET, which simulates the evolution of virtual organisms to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I also conduct field research to better model the behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in writing agent-based models for both research in and the teaching of subjects including: biology, genetics, evolution, demography, and behavior.

For my dissertation research, I have produced “B3GET,” an agent-based model which simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in body size, variation in aggression, sperm competition, infanticide, and competition over access to food and mates. B3GET calculates each agent’s ‘decision-vectors’ from its diploid chromosomes and current environmental context. These decision-vectors dictate movement, body growth, desire to mate and eat, and other agent actions. Chromosomes are modified during recombination and mutation, resulting in behavioral strategies that evolve over generations. Rather than impose model parameters based on a priori assumptions, I have used an experimental evolution procedure to evolve traits that enabled populations to persist. Seeding a succession of populations with the longest surviving genotype from each run resulted in the evolution of populations that persisted indefinitely. I designed B3GET for my dissertation, but it has an indefinite number of applications for other projects in biology. B3GET helps answer fundamental questions in evolutionary biology by offering users a virtual field site to precisely track the evolution of organismal populations. Researchers can use B3GET to: (1) investigate how populations vary in response to ecological pressures; (2) trace evolutionary histories over indefinite time scales and generations; (3) track an individual for every moment of their life from conception to post-mortem decay; and (4) create virtual analogues of living species, including primates like baboons and chimpanzees, to answer species-specific questions. Users are able to save, edit, and import population and genotype files, offering an array of possibilities for creating controlled biological experiments.

Ifigeneia Koutiva Member since: Monday, June 21, 2010 Full Member

PhD in Civil Engineering, National Technical University of Athens, M.Sc. in Environmental Technology, Imperial College London, Postgraduate Diploma in Water Resources and Environmental Management (online), University of Belgrade, Mining and Metallurgy Engineering, National Technical University of Athens

Ifigeneia Koutiva (female) is a senior environmental engineer, holding a PhD in Civil Engineering (NTUA), a Postgrad Diploma in Water Resources and Environmental Management (Un. of Belgrade - e-learning), an MSc in Environmental Technology (Imperial College London) and an MSc in Mining and Metallurgy Engineering (NTUA). Her PhD was funded by the Greek Ministry of Education through Heracleitous II scholarship. She is currently a postdoctoral scholar of the State Scholarship Foundation (IKY) for 2020 - 2021. She has 10 years of experience in various EU funded research projects, both as a researcher and as a project manager, in the fields of socio-technical simulation, urban water modelling, modelling and assessment of alternative water technologies, artificial intelligence, social quantitative research, KPI and water indicators development and assessment and analysis of large data sets. She is very competent with programming for creating ICT tools for agent based modelling and data analysis tools and she is an experienced user of spatial analysis software and tools. She is also actively involved in the design and implementation of numerous consultation workshops and conferences. She has authored more than 20 scientific journal articles, conferences articles and research reports.

My research interests lay within the interface of social, water and modelling sciences. I have created tools that explore the effects of water demand management policies in domestic urban water demand behaviour and the effects of civil decision making in flood risk management. I am interested in agent based modelling, artificial intelligence techniques, the creation of ABM tools for civil society, Circular Economy, distributed water technologies and overall urban water management.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.