Community

Ian Dennis Miller Member since: Tuesday, February 16, 2016 Full Member

MA Social Psychology, BS Cognitive Science

PhD student at University of Toronto: memes, social networks, contagion, agent based modeling, synthetic populations

Travis Brenden Member since: Tuesday, January 28, 2014

PhD Fisheries and Wildlife, MS Statistics, MS Fisheries and Wildlife, BS Biological Sciences

Ecology and population dynamics of fish and wildlife populations, epidemiology, biometry

Gina Graham Member since: Friday, April 03, 2015

MPH in process

complex systems science; implementation science; agent based modeling; health care infrastructure and population health; public health

Alessio Plebe Member since: Friday, March 10, 2017

PhD

neural computation, population dynamics

Anne Spaulding Member since: Monday, September 29, 2014

MD MPH

STDs, HIV, Hepatitis C in prison populations

Stefan Lhachimi Member since: Thursday, July 14, 2016

PhD Public Health

Population Health Modeling

Jay Bancroft Member since: Tuesday, July 29, 2014

PhD

population invasion and biological control

Kristin Crouse Member since: Sunday, June 05, 2016 Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology

I am a PhD Candidate in the Biological Anthropology program at the University of Minnesota. My research involves using agent-based models combined with field research to test a broad range of hypotheses in biology. I have created a model, B3GET, which simulates the evolution of virtual organisms to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I also conduct field research to better model the behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in writing agent-based models for both research in and the teaching of subjects including: biology, genetics, evolution, demography, and behavior.

For my dissertation research, I have produced “B3GET,” an agent-based model which simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in body size, variation in aggression, sperm competition, infanticide, and competition over access to food and mates. B3GET calculates each agent’s ‘decision-vectors’ from its diploid chromosomes and current environmental context. These decision-vectors dictate movement, body growth, desire to mate and eat, and other agent actions. Chromosomes are modified during recombination and mutation, resulting in behavioral strategies that evolve over generations. Rather than impose model parameters based on a priori assumptions, I have used an experimental evolution procedure to evolve traits that enabled populations to persist. Seeding a succession of populations with the longest surviving genotype from each run resulted in the evolution of populations that persisted indefinitely. I designed B3GET for my dissertation, but it has an indefinite number of applications for other projects in biology. B3GET helps answer fundamental questions in evolutionary biology by offering users a virtual field site to precisely track the evolution of organismal populations. Researchers can use B3GET to: (1) investigate how populations vary in response to ecological pressures; (2) trace evolutionary histories over indefinite time scales and generations; (3) track an individual for every moment of their life from conception to post-mortem decay; and (4) create virtual analogues of living species, including primates like baboons and chimpanzees, to answer species-specific questions. Users are able to save, edit, and import population and genotype files, offering an array of possibilities for creating controlled biological experiments.

Fabio Correa Duran Member since: Sunday, March 15, 2015

Physicist, Ms. C. Physics

I have been working in the software implementation of different kinds of complex networks inspired in real-life populations. My software may be classified on several categories: complex networks, Aedes aegypti development, dengue epidemics, cultural behavior of populations. I am also researching in education of Deaf people in Colombia.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.