Displaying 10 of 211 results for 'Jan Van Bavel'
Moira Zellner’s academic background lies at the intersection of Urban and Regional Planning, Environmental Science, and Complexity. She has served as Principal Investigator and Co-Investigator in interdisciplinary projects examining how specific policy, technological and behavioral factors influence the emergence and impacts of a range of complex socio-ecological systems problems, where interaction effects make responsibilities, burdens, and future pathways unclear. Her research also examines how participatory complex systems modeling with stakeholders and decision-makers can support collaborative policy exploration, social learning, and system-wide transformation. Moira has taught a variety of workshops on complexity-based modeling of socio-ecological systems, for training of both scientists and decision-makers in the US and abroad. She has served the academic community spanning across the social and natural sciences, as reviewer of journals and grants and as a member of various scientific organizations. She is dedicated to serving the public through her engaged research and activism.
Applications of agent-based modeling to urban and environmental planning
Participatory modeling
The Global Resource Observatory (GRO)
The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.
GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.
Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.
I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).
One of my research areas is agent-based modelling of land change in Brazil. I have worked with ABM in frontier areas of the Brazilian Amazon. I am also part of the team that develops TerraME, an OSS toolkit for ABM in cellular spaces.
Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb
Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.
Christophe Le Page currently works at the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Christophe does research on participatory modelling of the interactions between agriculture and the environment, focusing more specifically on the relationships among stakeholders about the management of natural renewable resources. Christophe is designing and using interactive agent-based simulation and role-playing games. He is an active member of the Companion Modelling research group.
Agent-based simulations and role-playing games in the field of renewable resource management.
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Displaying 10 of 211 results for 'Jan Van Bavel'