Community

Bruce Edmonds Member since: Tuesday, March 10, 2009 Full Member Reviewer

BA(Hons) Mathematics, Oxford, 1983, PhD in Philosophy of Science, Manchester 1999

I studied Mathematics at Oxford (1979-1983) then did youth work in inner city areas for the Educational Charity. After teaching in Grenada in the West Indies we came back to the UK, where the first job I could get was in a 6th form college (ages 16-18). They sent me to do post16 PCGE, which was so boring that I also started a part-time PhD. The PhD was started in 1992 and was on the meaning and definition of the idea of “complexity”, which I had been pondering for a few years. Given the growth of the field of complexity from that time, I had great fun reading almost anything in the library but I did finally finish it in 1999. Fortunately I got a job at the Centre for Policy Modelling (CfPM) in 1994 with its founder and direction, Scott Moss. We were doing agent-based social simulation then, but did not know it was called this and did not meet other such simulators for a few years. With Scott Moss we built the CfPM into one of the leading research centres in agent-based social simulation in the world. I became director of the CfPM just before Scott retired, and later became Professor of Social Simulation in 2013. For more about me see http://bruce.edmonds.name or http://cfpm.org.

All aspects of social simulation including: techniques, tools, applications, philosophy, methodology and interesting examples. Understanding complex social systems. Context-dependency and how it affects interaction and cognition. Complexity and how this impacts upon simulation modelling. Social aspects of cognition - or to put it another way - the social embedding of intelligence. Simulating how science works. Integrating qualitative evidence better into ABMs. And everything else.

Brent Auble Member since: Friday, December 17, 2010

B.S. Computer Science, Lafayette College, MAIS, Computational Social Science, George Mason University

Dissertation: Narrative Generation for Agent-Based Models

Abstract: This dissertation proposes a four-level framework for thinking about having agent-based models (ABM) generate narrative describing their behavior, and then provides examples of models that generate narrative at each of those levels. In addition, “interesting” agents are identified in order to direct the attention of researchers to the narratives most likely to be worth spending their time reviewing. The focus is on developing techniques for generating narrative based on agent actions and behavior, on techniques for generating narrative describing aggregate model behavior, and on techniques for identifying “interesting” agents. Examples of each of these techniques are provided in two different ABMs, Zero-Intelligence Traders (Gode & Sunder, 1993, 1997) and Sugarscape (Epstein & Axtell, 1996).

Ismael Chaile Member since: Wednesday, December 11, 2013 Full Member Reviewer

Ph.D. with research line in Multi-agent systems and Distributed systems (robots, IoT), Master In Science in Micro and Nanoelectronic, Master in General Direcction and Strategic Planning, Electronic Engineer

I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).

MV Eitzel Solera Member since: Sunday, May 21, 2017 Full Member Reviewer

I am a data scientist employing a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems. I am also working to apply Science and Technology Studies to my modeling processes in order to make social-ecological system management more just. I prefer to work collaboratively with communities on modeling, both teaching mapping and modeling skills as well as analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis. Recent projects include: 1) studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis).

Talal Alsulaiman Member since: Friday, February 27, 2015

Bachelor of Science in Systems Engineering, Master of Science in Industrial Engineering, Master of Science in Financial Engineering

In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.

Tuong Manh Vu Member since: Wednesday, May 16, 2018

I received my BSc, MSc, and PhD from the University of Nottingham. My PhD focuses on the Agent-Based Modelling and Simulation (ABMS) of Public Goods Game (PGG) in Economics. In my thesis, a development framework was developed using software-engineering methods to provide a structured approach to the development process of agent-based social simulations. Also as a case study, the framework was used to design and implement a simulation of PGG in the continuous-time setting which is rarely considered in Economics.

In 2017, I joined international, inter-disciplinary project CASCADE (Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies) to further pursue my research interest in strategic modelling and simulation of human-centred complex systems. CASCADE, funded by the US National Institutes of Health (NIH), aims to develop agent-based models and systems-based models of the UK and US populations for the sequential and linked purposes of testing theories of alcohol use behaviors, predicting population alcohol use patterns, predicting population-level alcohol outcomes and evaluating the impacts of policy interventions on alcohol use patterns and harmful outcomes.

Davide Natalini Member since: Saturday, December 07, 2013

MSc in Political Science - Environmental Policies and Economics, University of Torino, Italy, BSc in Political Science - International Relations, University of Bologna, Italy

The Global Resource Observatory (GRO)

The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.

GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.

Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.

Juan Ocampo Member since: Wednesday, September 11, 2019 Full Member

PhD Candidate at Lund School of Economics and Management - Sweden, (2019) MSocSc Organizational Innovation and Entrepreneurship, Copenhagen Business School, (2016) MSc in Industrial Engineering, Universidad de los Andes, (2012) Industrial Engineering, Universidad de los Andes, Colombia

I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.

In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.

Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.

As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead

William Rand Member since: Wednesday, October 24, 2007 Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

James Howard Member since: Friday, February 01, 2019 Full Member

Ph.D., Public Policy, University of Maryland Baltimore County, M.P.A., Public Policy and Administration, University of Baltimore, B.S., Mathematics, University of Maryland

I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.

I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.

In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.