I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.
In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.
Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.
As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead
Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.
Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.
1987-1989: assistant professor at the Neuchâtel University (Switzerland)
1990-2001: full professor at the Neuchâtel University (Switzerland): artificial intelligence & software engineering
2001- : senior researcher at CIRAD in the unit “Gestion des Ressources et Environnement” (GREEN) and from 2021 “Savoirs ENvironnement Sociétés” (UMR SENS)
Former professor at the University of Neuchatel in Switzerland and now senior researcher at CIRAD in France, I am doing research on artificial intelligence since 1984. Having begun with logic programming, I naturally applied logics and its extensions (i.e. modal logics of various sorts) to specify agent behaviour. Since 1987, I moved both to embedded intelligence (using mobile robots) and multi-agent systems applied, in particular, to job-shop scheduling and complex system simulation and design. Since 2001, I exclusively work on modelling and simulation of socio-ecosystems in a multidisciplinary team on renewable resources management (GREEN). I am focusing on modelling complex systems in a multi-disciplinary (economist, agronomist, sociologists, geographers, etc.) and multi-actor (stakeholders, decision makers) setting. It includes:
- representing multiple points of view at various scales and levels on a complex socio-ecosystem, using ontologies and contexts
- representing the dynamics of such systems in a variety of formalisms (differential equations, automata, rule-based systems, cognitive models, etc.)
- mapping these representations into a simulation formalism (an extension of DEVS) for running experiments and prospective analysis.
This research is instantiated within a modelling and simulation platform called MIMOSA (http://mimosa.sourceforge.net). The current applications are the assessment of the sustainability of management transfer to local communities of the renewable ressources and the dynamics of agro-biodidversity through networked exchanges.