Kenneth Aiello Member since: Thursday, January 23, 2020 Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Kit Martin Member since: Thursday, January 15, 2015 Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage:

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Mind Mingles Member since: Monday, July 19, 2021 Full Member

We at Mind Mingles, a Digital marketing agency utilize a flexible and dynamic approach in delivering a broad range of innovative and cost-effective business solutions in digital marketing, Web Design, and Development services. We work closely with client needs to bring results within the specified time frame. Mind Mingles takes a comprehensive way out to maximize online exposure, improving customer attainment, and helping businesses increase revenues and profits. We design comprehensive internet marketing strategies from scratch that works and are proven.
We offer an array of services-
Search Engine Optimization
Social Media Optimization
Website Design & Development
Content Writing
Online Reputation Management
Pay Per Click
Exceeding client satisfaction has always been a motto for Mind Mingles, SEO company India and we believe in ethics and strong relationships with our customers above anything else.
We welcome any opportunity to do business with you and help you to grow your user base and revenue. Please contact us for a best-fit proposal for your online marketing needs.

Federico Bert Member since: Tuesday, June 25, 2013


My general research interest is on modeling of complex natural and human systems systems. Specifically, I am interested in modeling agricultural production systems, that blends the complexity, multiplicity of scales and feedbacks of biophysical interactions in natural ecosystems with the additional intricacies of human decision-making. During last years I have coordinated the development and evaluation of an agent-based of agricultural production systems in the Argentinean Pampas.

Andrea Scalco Member since: Tuesday, February 24, 2015

Ph.D. Student

The Ph.D. research project is mainly focused on the study of the influence of emotional intelligence inside decision-making processes and on the social and emotional aspects of organizations.Furthermore, the research has taken into account the generative science paradigm: in this way, the general aim is the development of social simulations able to account organizational processes related with emotions and with the emotional intelligence from the bottom-up.

Juan Moisés De la Serna Member since: Sunday, January 10, 2021 | |PhD in Psychology and Master in Neuroscience and Behavioral Biology |Part Time Online Adjunct Faculty |The most read author in Spain in 2020|Expert in Quality Agency for Higher Education of Latvia AIKA.LV |Nowadays, my research focuses on Potential Factors Influencing COVID-19 and Short- & Long-Term Psychological and Neurological complications after SARS-CoV-2 infection in humans

Social change with COVID-19

leonardo.rzoya Member since: Monday, May 28, 2012

BSc in Political Science, PhD Student in Sociology

My field of interests concerns two axes:
First, epistemology of computational modeling and simulation of complex systems. I am particularly interested in a sociological inquiry about social implication of knowledge derived from complex systems’ study.
Second, assessing the possibilities and limits of studying social complexity with complex systems tools, particularly, agent-based modeling and simulation.

Alessandro Sciullo Member since: Monday, November 11, 2013

Political Science

Current main research interests are concerned on diffusion of ICT among social actors of territorial systems: citizens(individuals and households), enterprises and governmental bodies. Most used methodological tools are , so far, multivariate statistics and Social Network Analysis.
I’d like to apply an ABM approach in the context of my PhD research project, aimed to observe the different modes of collaboration among universities and enterprises and tehir different effectiveness in terms of creation and spread of new knowledge.

Saeed Moradi Member since: Thursday, June 04, 2020

Dr. Saeed Moradi received his Ph.D. in Civil Engineering from Texas Tech University in Lubbock, Texas. Saeed has 11+ years of experience in research, policymaking, housing sector, construction management, and structural engineering. His career developed his enthusiasm for the enhancement of post-disaster recovery plans. Through his research on disaster recovery, community resilience, and human-centered complex systems, Saeed aims to bridge the gap between social sciences and civil/infrastructure engineering.

Community and Infrastructure Resilience
Disaster Recovery
Complex Systems Modeling
Agent-Based Modeling
System Dynamics
Machine Learning
Pattern Recognition
Data Mining
Spatial Analysis and Modeling
Construction Management
Building Information Modeling

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.