Community

Arend Ligtenberg Member since: Thursday, April 09, 2015

PhD

Agent Based Modelling for spatial systems

Phil Riris Member since: Wednesday, May 01, 2013 Full Member Reviewer

BA Archaeology, MA Archaeology, PhD Archaeology (in progress)

Enrico Crema Member since: Monday, November 30, 2009 Full Member Reviewer

PhD in Archaeology, MSc in GIS and Spatial Analysis in Archaeology, BA hons. (Laurea Magistrale) in Palaeoethnology

emaille Member since: Friday, February 03, 2012

Ph D.

Land cover changes spatial agents based modelling
Forest fire risk modelling
Geographical information based modelling
Decision support for land planning

Tatiana Filatova Member since: Tuesday, October 04, 2011 Full Member

PhD (Cum Laude), Department of Water Engineering and Management, University of Twente, The Netherlands

I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.

I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.

Derek Robinson Member since: Wednesday, November 05, 2014 Full Member Reviewer

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Mauro Eidi Assano Member since: Monday, November 05, 2012

Msc Computer Science, MBA

Distributed computing modeling, multi-agent computing models, economic and financial models, healthcare chronic disease models

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.