Community

Shah Jamal Alam Member since: Wednesday, July 16, 2008 Full Member Reviewer

PhD in Social Simulation, Masters in Computer Science, BS in Computer Science

My current interests include: agent-based modeling, simulating social complexity, land use, dynamic networks, social and cultural anthropology, HIV transmission dynamics, socio-political conflicts and social movements

Malik Koné Member since: Thursday, January 21, 2016

Master in mathematics and didactics

Agent Based Modeling (ABM), Agent Based Social System (ABSS), Multi-Agent Systems (MAS), Bayesian learning, Social networks Analysis (SNA), Socio ecological Dynamics.

María Del Castillo Member since: Tuesday, February 18, 2014

PhD

Archaeological Simulation of Social Interactions, mainly between hunter gatherers societies.

Arezky Rodríguez Member since: Saturday, March 02, 2013

PhD

Rory Sie Member since: Tuesday, February 11, 2014

dr., MSc.

Mainly interested in studying social networks of learners, teachers, and innovators. Uses Social Network Analysis, but also sentiment analysis, data mining, and recommender system techniques.

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Arezo Bodaghi Member since: Tuesday, January 30, 2018

Master of science

My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.

Annie Waldherr Member since: Monday, February 10, 2014

PhD

Annie Waldherr is a postdoctoral researcher at the Free University of Berlin, Institute for Media and Communication Studies. In 2012, she received her PhD for her dissertation on the dynamics of media attention. Her research interests include modeling public spheres, political online communication as well as science and technology discourses.

Gary Polhill Member since: Wednesday, September 05, 2012 Full Member

BA (Hons) Computing and Artificial Intelligence (Sussex), Ph. D. Guaranteeing Generalisation in Neural Networks (St. Andrews)

Gary Polhill did a degree in Artificial Intelligence and a PhD in Neural Networks before spending 18 months in industry as a professional programmer. Since 1997 he has been working at the Institute on agent-based modelling of human-natural systems, and has worked on various international and interdisciplinary projects using agent-based modelling to study agricultural systems, lifestyles, and transitions to more sustainable ways of living. In 2016, he was elected President of the European Social Simulation Association, and was The James Hutton Institute’s 2017 Science Challenge Leader on Developing Technical and Social Innovations that Support Sustainable and Resilient Communities.

Muaz Niazi Member since: Sunday, June 07, 2009 Full Member Reviewer

BE (Hons), MS CS, PhD

Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.