Community

Mirsad Hadzikadic Member since: Thursday, January 12, 2012 Full Member Reviewer

PhD Computer Science, SMU, MPA, Harvard University

Complex adaptive systems, complexity, systems science, creativity, data mining, machine learning, economic and health systems, science education

Dominik Reusser Member since: Thursday, January 12, 2012 Full Member Reviewer

Ph.D.
  • societal transitions under climate change
  • models as learning tools
  • communication of scientific results and uncertainties to decision makers
  • efficient information processing and knowledge management in science

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Onur Özgün Member since: Monday, September 09, 2013

PhD in Industrial Engineering, MS in Industrial Engineering, BS in Industrial Engineering

Simulation games, systemic complexity, learning, business cycles, and discrete-event simulation, modeling sustainability challenges in urban context.

Ifigeneia Koutiva Member since: Monday, June 21, 2010 Full Member

PhD in Civil Engineering, National Technical University of Athens, M.Sc. in Environmental Technology, Imperial College London, Postgraduate Diploma in Water Resources and Environmental Management (online), University of Belgrade, Mining and Metallurgy Engineering, National Technical University of Athens

Ifigeneia Koutiva (female) is a senior environmental engineer, holding a PhD in Civil Engineering (NTUA), a Postgrad Diploma in Water Resources and Environmental Management (Un. of Belgrade - e-learning), an MSc in Environmental Technology (Imperial College London) and an MSc in Mining and Metallurgy Engineering (NTUA). Her PhD was funded by the Greek Ministry of Education through Heracleitous II scholarship. She is currently a postdoctoral scholar of the State Scholarship Foundation (IKY) for 2020 - 2021. She has 10 years of experience in various EU funded research projects, both as a researcher and as a project manager, in the fields of socio-technical simulation, urban water modelling, modelling and assessment of alternative water technologies, artificial intelligence, social quantitative research, KPI and water indicators development and assessment and analysis of large data sets. She is very competent with programming for creating ICT tools for agent based modelling and data analysis tools and she is an experienced user of spatial analysis software and tools. She is also actively involved in the design and implementation of numerous consultation workshops and conferences. She has authored more than 20 scientific journal articles, conferences articles and research reports.

My research interests lay within the interface of social, water and modelling sciences. I have created tools that explore the effects of water demand management policies in domestic urban water demand behaviour and the effects of civil decision making in flood risk management. I am interested in agent based modelling, artificial intelligence techniques, the creation of ABM tools for civil society, Circular Economy, distributed water technologies and overall urban water management.

Manolis Tzouvelekas Member since: Sunday, November 02, 2014

B.A in Public Administration, European Masters Degree in Public Administration

Social Innovation and Monetary Innovation. Developing Social Finance tools for social enterprises.

Cristina Chueca Del Cerro Member since: Friday, May 15, 2020

I’m a PhD researcher at the University of Glasgow working on modelling political polarisation on social media platforms suing agent-based models

agent-based models, social networks, python, R, NetLogo

Shah Jamal Alam Member since: Wednesday, July 16, 2008 Full Member Reviewer

PhD in Social Simulation, Masters in Computer Science, BS in Computer Science

My current interests include: agent-based modeling, simulating social complexity, land use, dynamic networks, social and cultural anthropology, HIV transmission dynamics, socio-political conflicts and social movements

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.