Agent-based Modeling, Maching Learning, Algorithmic Marketing, Diffusion of Innovations, Online Communities
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
structure of scientific revolutions, dynamics of innovation, exploration-exploitation dynamics
Innovation Networks, University-Industry Links, Management and Policy for Technologies in Emerging Economies (Brazil), Agent-based Simulation.
I am an Associate Professor of Data Analytics at Trinity Business School, Trinity College Dublin, The University of Dublin and a Senior Fellow of the Higher Education Academy. I was the Director of Postgraduate Teaching at the Department of Management Science, Lancaster University Management School overseeing MSc programmes in Business Analytics, Management Science and Marketing Analytics, Logistics and Supply Chain Management, e-Business and Innovation, and Project Management.
My research interests lie in the areas of predictive analytics using simulation. I am particularly interested in simulation modelling methodology (symbiotic simulation, hybrid modelling, agent-based simulation, discrete-event simulation) with applications in operations and supply chain management (e.g. hospital, manufacturing, transportation, warehouse) and social dynamics (e.g. diffusion of perception). Currently, I am the associate editor of the Journal of Simulation and the secretary of The OR Society‘s Special Interest Group in Simulation. I am the track coordinator of Agent-Based Simulation for the Winter Simulation Conference 2018.
Becky is a Research Associate at the Imperial Centre for Energy Policy and Technology (ICEPT). She investigates economic, social and technical aspects of energy policy in the UK and abroad.
Becky’s current research is focussed on transitions in the UK bioenergy system and on biofuels for aviation. She is involved with two major projects: Bioenergy Value Chains: Whole Systems Analysis and Optimisation, an EPSRC SUPERGEN Bioenergy Challenge Project; and Renewable Jet Fuel Supply Chain Development and Flight Operations (RENJET), a project for EIT Climate-KIC. Becky has also worked on projects for the UK Energy Research Centre – International Renewable Energy Agency (UKERC-IRENA) collaboration, investigating issues such as economic value creation, policy evaluation metrics, innovation theory and rural electrification. She is particularly interested in the role of renewable technologies for developing countries, having lived and worked in Mali and Senegal.
Interested in how technology innovation impacts people’s lives.
IRPact - An integrated agent based modeling approach in innovation diffusion
Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.