H Parunak Member since: Tuesday, June 20, 2017

Ph.D., Near Eastern Languages and Civilizations, Harvard, MS, Computer & Communication Sciences, Univ of Michigan, AB, Physics, Princeton University

Applications of agent-based modeling and complexity theory to real-world problems. I am particular interested in stigmergic polyagents, their relation to the path integral formalization of quantum physics, and their application to combinatorially explosive problems, but also work extensively in modeling social systems.

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer


I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

Roger Cremades Member since: Wednesday, April 01, 2020 Full Member

Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth (2020-2022), the largest global research programme in global change. Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience.

Global change, human-Earth interactions, complex systems.

Andrew Bell Member since: Thursday, January 23, 2014 Full Member Reviewer

PhD, Natural Resource Management, University of Michigan

Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.

Matteo Richiardi Member since: Wednesday, February 01, 2017


Matteo Richiardi is an internationally recognised scholar in  micro-simulation modelling (this includes dynamic microsimulations and agent-based modelling). His work on micro-simulations involves both methodological research on estimation and validation techniques, and applications to the analysis of distributional outcomes, the functioning of the labour market and welfare systems. He is Chief Editor of the International Journal of Microsimulation. Examples of his work are the two recent books “Elements of Agent-based Computational Economics”, published by Cambridge University Press (2016), and “The political economy of work security and flexibility: Italy in comparative perspective”, published by Policy Press (2012).

Christopher Parrett Member since: Sunday, October 20, 2019 Full Member

I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.

  • Applied data science (machine/deep learning applications) and computational modeling (agent-based
    modeling) in U.S. Government
  • Geographic Information Systems and analysis of dense urban environments and complex terrain
  • Complexity theory and computational organizational design of distributed enterprise teams.
  • Human Capital Management and Talent Management policy development

Klaus G. Troitzsch Member since: Wednesday, December 12, 2018 Full Member

Klaus G. Troitzsch was a full professor of computer applications in the social sciences at the University of Koblenz-Landau since 1986 until he officially retired in 2012 (but continues his academic activities). He took his first degree as a political scientist. After eight years in active politics in Hamburg and after having taken his PhD, he returned to academia, first as a senior researcher in an election research project at the University of Koblenz-Landau, from 1986 as full professor of computer applications in the social sciences. His main interests in teaching and research are social science methodology and, especially, modelling and simulation in the social sciences.
Among his early research projects there is the MIMOSE project which developed a declarative functional simulation language and tool for micro and multilevel simulation between 1986 and 1992. Several EU funded projects were devoted to social simulation and policy modelling, the most recent from 2012 to 2015 combining data/text mining and agent-based simulation to analyse the global dynamics of extortion racket systems.
He authored, co-authored, and co-edited several books and many articles in social simulation, and he organised or co-organised a number of national and international conferences in this field. Over nearly three decades he advised and/or supervised more than 55 PhD theses, most of them in the field of social simulation. He offered annual summer and spring courses in social simulation between 1997 and 2009; more recent courses of this kind are now being organised by the European Social Simulation Assiciation and held at different places all over Europe (mostly with his contributions).

Computational social science, structuralist theory reconstruction

Paul Van Liedekerke Member since: Thursday, May 31, 2018

Interested in numerical models and new conceptual ideas, applications from industry to medicine.

I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.

I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.

The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).

Meike Will Member since: Thursday, June 11, 2020

  • since 03/2017: PhD Student at the Department of Ecological Modelling, PhD Topic: “Effects of microinsurance on informal safety nets and on strategies for natural resource use – a model-based analysis” (SEEMI-Project in collaboration with the Junior Research Group POLISES)
  • 10/2014 - 02/2017 Master of Science in Physics, Leipzig University
  • 10/2011 - 12/2014 Bachelor of Science in Physics, Leipzig University
  • Agent-based modelling of social-ecological systems
  • Coupling of agent-based modelling and social network analysis
  • Effects of microinsurance on informal risk-sharing arrangements and on land-use strategies
  • Representation of human decision-making in agent-based models

Oscar Montes De Oca Member since: Monday, September 09, 2013 Full Member Reviewer

Masters of Applied Science, Massey University, New Zealand, Diploma in Manufacturing, ITESM, Mexico, Bachelors in Industrial Engineering, ITESM, Mexico

I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.