Francisco Rodes Member since: Wednesday, January 31, 2018

Bachelor's Degree in Industrial Engineering, Master's Degree in Industrial Engineering and Management

As a Master’s Thesis student, I am intended to apply Artificial Intelligence to an already existing model with the aim of making it more accurate.

Even though I do not have the focus point and the scope of the research clear yet, the road map is set to start from a very simple model to validate the technology and methodology used and then continue with more abitiuos projects.

I like the co-operation that I have found in this space and I think that I could both learn a lot from the community and add value with my novel trials and findings.

Of course I would be pleased to update the status of my project and I would try to help if I have the proper knowledge or different angle to other peers who seek for seconds opinions.

Thank you,

Dehua Gao Member since: Monday, January 05, 2015 Full Member Reviewer


Associate Professor
School of Management Science and Engineering, Shandong Technology and Business University (Yantai 264005, P. R. China)


Ph. D. Degree, 09/2009 – 07/2015
School of Economics and Management, Beihang University (P. R. China)

M. A. Degree, 09/2003 – 02/2006
The Institute of Systems Engineering, Dalian University of Technology (P. R. China)

B. A. Degree, 09/1999 – 07/2003
Department of Information and Control Engineering, Zhengzhou University of Light Industry (P. R. China)


Visiting Scholar at GECS – Research Group of Experimental and Computational Sociology (March, 2017 – February, 2018)
 Università degli Studi di Brescia (Italy)
 Co-supervisor: Professor Flaminio Squazzoni

Summer school in ‘Agent-based modeling for social scientists’ (September 4-8, 2017)
 University of Brescia, Italy
 Instructors: Flaminio Squazzoni, Simone Gabbriellini, Nicolas Payette, Federico Bianchi

The Santa Fe Institute’s Massive Open Online Course: Introduction to Agent-Based Modeling (Jun 5 – September 8, 2017)
 The Santa Fe Institute, Complexity Explore Web:
 Instructors: Bill Rand

Summer school in ‘Complex systems and management’ (July 2-12, 2012)
 National Defense University, P. R. China
 Instructors: Xinjun Mao, Yongfang Liu, Dinghua Shi, Qiyue Cheng

Routine dynamics, Agent-based modeling, Computational social/organization science, Industrial systems engineering, etc.

Talal Alsulaiman Member since: Friday, February 27, 2015

Bachelor of Science in Systems Engineering, Master of Science in Industrial Engineering, Master of Science in Financial Engineering

In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.

Aniruddha Belsare Member since: Monday, November 07, 2016 Full Member Reviewer

PhD, BVSc & AH

Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019). Currently he is a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University.

My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, big horn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), and Lyme disease.

Nicholas Magliocca Member since: Monday, January 31, 2011

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Edmund Chattoe-Brown Member since: Tuesday, April 17, 2012 Full Member

BA PPE (Oxon): First Class Tripartite, MSc Knowledge Based Systems (Sussex), DPhil (Oxon): "The Evolution of Expectations in Boundedly Rational Agents"

I have been involved in agent-based modelling since the early nineties with a consistent attention to methdological improvement, institutional development and empirical issues. My mission is that ABM should be a routinely accepted research method (with a robust methodology) across the social sciences. To this end I have built diverse models and participated in research projects across economics, law, medicine, psychology, anthropology and sociology. I took a DPhil in economics on adaptive firm behaviour and then was involved in two research projects on money management and farmer decision making. Since 2006 I have worked at the Department of Sociology (now the School of Media, Communication and Sociology) at the University of Leicester. I was involved in the founding of JASSS and (more recently RofASSS and have regularly served on the review panels for international conferences in the ABM community.

Decision making, research design and research methods, social networks, innovation diffusion, secondhand markets.

Caryl Benjamin Member since: Wednesday, December 12, 2012

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

Bashar Ourabi Member since: Sunday, March 12, 2017 Full Member Reviewer

Bsc Industrial Engineering, Masters of Public Administration/ Development Economics

Bashar Ourabi is a principle consultant at arabianconsult of Syria where he has been chairman since 2003. He holds Bsc. Eng., A Grad. Certificate in Project engineering from the University of Central Florida; and a MS. in Public Administration from the Doha Graduate Institute in Qatar.

Bashar completed his graduate studies at Doha Institute for Graduate Studies and his undergraduate studies at the Unversity of Central Florida. His research interests lie in the area of systems modelling, ranging from theory to design to implementation. He has collaborated actively with researchers in several other disciplines of computer science, system design, and bigData Artificial Intellegence, particularly BigData Expert System and Automated decision Making.

He has served on many international posts overlooking public infrastructure design and operations, varying from public transport, urban design and operations management. These posts spanned over the the US and the Middle East including Florida, UAE and Qatar.

Bashar has served on many conferences and workshop program committees and has succesfully delivered many corporate training programs..

Artificial Intellegence
Web Based Decision Making and Expert Systems
Fuzzy Logic
AgentBased Modelling
Discret Event Simulation
Corporate Support Systems

Enver Miguel Oruro Puma Member since: Tuesday, March 23, 2010 Full Member Reviewer

BA Psychology
(Cover simulation using NetLogo, January 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. Learn. Mem. 2020. 27: 20-32 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
(paper using NetLogo, December 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period Learn. Mem. 2020. 27: 493-502 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press

Enver Oruro, BA Psych. PhD(s).
Computational Psychologist
[email protected]
Neurocomputational and Language Processing Laboratory, Institute of Physics/ UFRGS
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry/ UFRGS

Meeting Organization

2009 First Meeting on Complex Systems -Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima

2010 Second Meeting on Complex Systems - College of Psychologists of Peru / Colegio de Psicólogos del Perú (CPsP) Lima

2012 3rd Meeting on Complex Systems – Computational Social Psychology, /Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima February 2012
2012 4th Meeting on Complex Systems – Cognotecnology and Cognitive Science, Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima July 2012

2014 5th Meeting on Complex Systems – Complexity Roadmap. The Imperial City of the Incas, Cusco, April.

2015 Chair of “e-session on Neuroscience and Behavior” UNESCO UniTwin CS-DC’15
2015 Chair of “e-session on Social Psychology” UNESCO UniTwin CS-DC’15
CS-DC’15 (Complex Systems Digital Campus ’15 – World e-Conference) is organizing the e-satellites of CCS’15, the international Conference on Complex Systems. It is devoted to all scientists involved in the transdisciplinary challenges of complex systems, crossing theoretical questions with experimental observations of multi-level dynamics. CCS’15 is organized by the brand new ASU-SFI Center for Biosocial Complex Systems. Arizona State University, (USA) from Sept 28 to Oct 2, 2015, in close collaboration with the Complex Systems Society and the Santa Fe Institute. from

2018 Seminar in “Mother-Infant Attachment and Supercomputing”, NY. USA and Porto Alegre, Brazil, August 09.

2019 Seminar in Experimental and Computational Studies on Mother-Infant Relationship October 8 and 15, 2019 ICBS, /Determine the neural pathways by which the nervous system of the neonates establish attachment with their mothers is a problem that has motivated hypothesis and experiments at several scale levels, from neurotransmission to ethological level. UFRGS, Porto Alegre, Brazil.

2020 Seminar in Maternal Infant Relationship Studies: Neuroscience and Artificial Intelligence March 7 and 9
Goals 1. Discuss a Roadmap for mother-Infant relationship research in the framework of the UNESCO Complex System Digital Campus project.

Linea de investigacion: Estrategias de modelamiento en Psicobiologia y Psicologia Social
/ Linea estrategica 1: bases biologicas de la cognicion social desde sistemas complejos

Kenneth Aiello Member since: Thursday, January 23, 2020 Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.