Community

Julia Kasmire Member since: Wednesday, May 09, 2012 Full Member

MSc in Evolution of Language and Cognition, BA in Linguistics

About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my Academia.org profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.

Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence

Konstantinos Raptis Member since: Saturday, December 08, 2012

Master's degree, Information Management and Web Technologies, University of the Aegean, DipEng, Information and Communication Systems Engineering, University of the Aegean

Arpan Jani Member since: Monday, September 30, 2019

Arpan Jani received his PhD in Business Administration from the University of Minnesota in 2005. He is currently an Associate Professor in the Department of Computer Science and Information Systems at the University of Wisconsin – River Falls. His current research interests include agent-based modeling, information systems and decision support, behavioral ethics, and judgment & decision making under conditions of risk and uncertainty.

agent-based modeling; behavioral ethics; information systems and decision support; project management; judgment & decision making under conditions of risk and uncertainty.

Fernando Galeana Member since: Tuesday, October 08, 2013

M.A. in International Development

I am a first year PhD student interested in applying ABM to understand the effect of formalizing property rights on the governance of land and natural resources.

Muaz Niazi Member since: Sunday, June 07, 2009 Full Member Reviewer

BE (Hons), MS CS, PhD

Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.

Jessica Turnley Member since: Monday, July 13, 2015 Full Member Reviewer

B.A. Anthropology/English Lit, Univ of California, Santa Cruz, 1974, M.A. Social Anthropology, Univ of Michigan, Ann Arbor, 1977, M.A. Cultural Anthropology, Cornell University, 1978, Ph.D. Anthropology/SE Asian Studies, Cornell University, 1983

I am interested in questions of method, and in the application of computational social models to a wide variety of national security questions (such as counterterrorism and counterinsurgency) as well as decision-making around complex natural resources such as water. My methods interest center on the use of qualitative social theory to inform the structure of computational social models, and the ways in which such models handle qualitative data. This raises questions around the nature of data and the ways in which computational social models convey information to decision-makers.

Amineh Ghorbani Member since: Tuesday, August 20, 2019 Full Member

Amineh Ghorbani is an assistant professor at the Engineering Systems and Services Department, Delft University of Technology, the Netherlands. She is also an affiliated member of the “Institutions for Collective Action” at Utrecht University. She obtained her M.Sc. in Computer Science (Artificial intelligence) from University of Tehran (Iran) (2009, honours) and her PhD from Delft University of Technology (2013, cum laude).

During her PhD, Amineh developed a meta-model for agent-based modelling, called MAIA, which describes various concepts and relations in a socio-technical system. This modelling perspective helped her develop a modelling paradigm that she refers to as institutional modelling.

Her current area of research is understanding the emergence and dynamics of institutions (set of rule organizing human society) using modelling. She is interested in how bottom-up collective action emerges and how institutions emergence and change within communities.

collective action
institutional emergence
evolution of institutions
community energy systems

Davide Natalini Member since: Saturday, December 07, 2013

MSc in Political Science - Environmental Policies and Economics, University of Torino, Italy, BSc in Political Science - International Relations, University of Bologna, Italy

The Global Resource Observatory (GRO)

The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.

GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.

Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.