Community

James Howard Member since: Friday, February 01, 2019 Full Member

Ph.D., Public Policy, University of Maryland Baltimore County, M.P.A., Public Policy and Administration, University of Baltimore, B.S., Mathematics, University of Maryland

I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.

I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.

In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.

Caryl Benjamin Member since: Wednesday, December 12, 2012

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

Talal Alsulaiman Member since: Friday, February 27, 2015

Bachelor of Science in Systems Engineering, Master of Science in Industrial Engineering, Master of Science in Financial Engineering

In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.

Jacob Nabe-Nielsen Member since: Tuesday, August 27, 2019 Full Member

My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.

clif531 Member since: Saturday, April 21, 2012

Master of Science in Information & Telecommunication Systems, Doctor of Philosophy in Systems Engineering

System of Systems and Complex Systems

John Bradford Member since: Tuesday, November 04, 2014

Ph.D. Sociology, University of Tennessee

Currently working on agent-based modeling of wealth and income distributions; formalizing some of Luhmann’s theories of communication; modeling social norms; and modeling generative mechanisms of status hierarchies.

Tika Adhikari Member since: Friday, January 20, 2012 Full Member Reviewer

Ph D, Student

Development of spatial agent-based models to sustainability science and ecosystem service assessment, integration of agent-based model with biophysical process based model, improvement of theory of GIScience and land use change science, development of spatial analytical approach (all varieties of spatial regression), spatial data modeling including data mining, linking processes such as climate change, market, and policy to study patterns.

Yutaka NAKAI Member since: Sunday, November 24, 2019 Full Member

Professor of Shibaura Institute of Technology

Computational social science
especially, evolutionary simulation of a society

Rikard Roitto Member since: Tuesday, July 23, 2013

PhD in Religious Studies

Historical studies of Early Christianity. Simulations of social agents aids my interpretation of history.

Garvin Boyle Member since: Sunday, February 03, 2013 Full Member Reviewer

B.Sc, B.Ed.

To understand the nature of sustainable biophysical/economic systems. To determine the necessary and sufficient conditions for sustainability. To explore the trade-off between sustainability and social or economic justice. To investigate the application of the MEP and/or the MEPP to economic systems, or agent-based models of economic systems.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.