Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Jo Hill Member since: Friday, January 20, 2012 Full Member Reviewer

BSc First Class (hons) Animal Behaviour with Ecology and Conservation, Mres Biosystematics

I am a first year PhD student at the Jill Dando Institute for Security and Crime Science at University College London

Peer-Olaf Siebers Member since: Friday, February 15, 2019 Full Member

I am an Assistant Professor at the School of Computer Science, University of Nottingham, UK.

My main research interest is the application of computer simulation to study human-centric complex adaptive systems. I am a strong advocate of Object Oriented Agent-Based Social Simulation. This is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Operations Research, Geography, and Computer Science. My current research focusses on Urban Sustainability and I am a co-investigator in several related projects and a member of the university’s “Sustainable and Resilient Cities” Research Priority Area management team.

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Matthew Oldham Member since: Friday, June 17, 2016

Bachelor of Economics (tons), MAIS - Computational Social Science

I am a Ph.D. candidate in Computational Social Science (CSS) program at George Mason (GMU). I hold a MAIS from GMU and a Bachelor of Economics from the University of Tasmania. My research interests are the application of ABMs, network analysis, and machine learning to financial markets. My email address and website is [email protected] and

I am interested in using agent-based model to understand the behavior of financial markets

Gary Polhill Member since: Wednesday, September 05, 2012 Full Member

BA (Hons) Computing and Artificial Intelligence (Sussex), Ph. D. Guaranteeing Generalisation in Neural Networks (St. Andrews)

Gary Polhill did a degree in Artificial Intelligence and a PhD in Neural Networks before spending 18 months in industry as a professional programmer. Since 1997 he has been working at the Institute on agent-based modelling of human-natural systems, and has worked on various international and interdisciplinary projects using agent-based modelling to study agricultural systems, lifestyles, and transitions to more sustainable ways of living. In 2016, he was elected President of the European Social Simulation Association, and was The James Hutton Institute’s 2017 Science Challenge Leader on Developing Technical and Social Innovations that Support Sustainable and Resilient Communities.

Lilian Alessa Member since: Friday, May 11, 2007 Full Member Reviewer

Ph.D., Cell Biology, University of British Columbia

Dr. Lilian Alessa, University of Idaho President’s Professor of Resilient Landscapes in the Landscape Architecture program, is also Co-Director of the University of Idaho Center for Resilient Communities. She conducts extensive research on human adaptation to environmental change through resilient design at landscape scales. Much of her work is funded by the National Science Foundation, including projects awarded the Arctic Observing Network, Intersections of Food, Energy and Water Systems (INFEWS) and the Dynamics of Coupled Natural Human Systems programs. Canadian-born and raised, Alessa received her degrees from the University of British Columbia. She also uses her expertise in social-ecological and technological systems science to develop ways to improve domestic resource security for community well-being, particularly through the incorporation of place-based knowledge. Her work through the Department of Homeland Security’s Center of Excellence, the Arctic Domain Awareness Center, involves developing social-technological methods to monitor and respond to critical environmental changes. Lil is a member of the National Science Foundation’s Advisory Committee for Environmental Research and Education and is on the Science, Technology and Education Advisory Committee for the National Ecological Observing Network (NEON). Professor Alessa also teaches a university landscape architecture capstone course: Resilient Landscapes with Professor Andrew Kliskey. Professor Alessa’s collaborative grant activity with Professor Andrew Kliskey, since coming to the university in 2013, exceeds 7 million USD to date. She has authored over a 100 publications and reports and has led the development of 2 federal climate resilience toolbox assessments, the Arctic Water Resources Vulnerability Index (AWRVI) and the Arctic Adaptation Exchange Portal (AAEP).

Claudine Gravel-Miguel Member since: Thursday, November 01, 2012 Full Member Reviewer

M.A., Anthropology, University of Victoria, Ph.D., Anthropology, Arizona State University

Dr. Gravel-Miguel currently works as a Postdoctoral Research Scholar for the Institute of Human Origins at Arizona State University. She does research in Archaeology and focuses on the Upper Paleolithic of Southwest Europe. She currently works on projects ranging from cultural transmission to human-environment interactions in prehistory.

Archaeology, GIS, ABM, social networks, portable art, ornaments, data science

Kit Martin Member since: Thursday, January 15, 2015 Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage:

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Rory Sie Member since: Tuesday, February 11, 2014

dr., MSc.

Mainly interested in studying social networks of learners, teachers, and innovators. Uses Social Network Analysis, but also sentiment analysis, data mining, and recommender system techniques.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.