Community

Bryann Avendaño Member since: Monday, June 29, 2015

B.Sc. Biologist, B.Sc. Ecologist, D.pl. Applied Statistics and Systems Dynamic Modelling

Ecology - Natural Resources Management (Community-based management)

I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.

I am interesting in research on Modelling of governance and Community-based management of natural resources.

Lisa Frazier Member since: Thursday, October 08, 2015

MPH, PhD Candidate

My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.

Francisco Rodes Member since: Wednesday, January 31, 2018

Bachelor's Degree in Industrial Engineering, Master's Degree in Industrial Engineering and Management

As a Master’s Thesis student, I am intended to apply Artificial Intelligence to an already existing model with the aim of making it more accurate.

Even though I do not have the focus point and the scope of the research clear yet, the road map is set to start from a very simple model to validate the technology and methodology used and then continue with more abitiuos projects.

I like the co-operation that I have found in this space and I think that I could both learn a lot from the community and add value with my novel trials and findings.

Of course I would be pleased to update the status of my project and I would try to help if I have the proper knowledge or different angle to other peers who seek for seconds opinions.

Thank you,
Francisco

Gudrun Wallentin Member since: Friday, October 28, 2016 Full Member

MSc. in GIS, Mag. in Ecology

Positions held today:
• Associate Professor for Geoinformatics and Ecology at the University of Salzburg (since 2017)
• UNIGIS Program Director (since 2020)
• Head of the Research Group “Spatial Simulation” (since 2013)

Major academic milestones:
• Assistant Professor, Department for Geoinformatics, University of Salzburg (2013-2017)
• Associate Faculty in the FWF Doctoral College “GIScience” (2013-2017)
• Director of Studies UNIGIS MSc distance learning programs, University of Salzburg (2012-2020)
• PhD at the University of Innsbruck on ecological modelling (2011)
• Research Assistant Austrian Academy of Sciences, GIScience Institute (2007-2011)
• Magistra in Ecology, Univ. of Innsbruck (2001) and MSc in GIS, Univ. of Edinburgh (2006)

Spatially-explicit simulation modelling of complex, ecological systems: * the added value of spatially-explicit modelling * Hybrid agent-based and system-dynamics modelling in ecology * Agent-based models, Cellular Automata

David Earnest Member since: Saturday, March 13, 2010 Full Member Reviewer

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Kenneth Aiello Member since: Thursday, January 23, 2020 Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Roberto Gonzalez Member since: Thursday, April 23, 2020 Full Member

Hello,

My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!

I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.

Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery

Forrest Stonedahl Member since: Friday, January 20, 2012 Full Member Reviewer

Masters in Computer Science at Northwestern University, PhD in Computer Science at Northwestern University

My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.

It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)

Sandra Schmid Member since: Saturday, March 07, 2015

Dr.

Innovation management

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.