Community

Grant Snitker Member since: Monday, April 21, 2014 Full Member Reviewer

Grant Snitker, M.A., is a doctoral candidate in archaeology at Arizona State University and a National Science Foundation Graduate Research Fellow. His research focuses on prehistoric uses of controlled fire, settlement history, and environmental change. Snitker approaches these topics through geoarchaeology, archaeological survey methods, GIS modeling, and landscape/fire ecology. He currently works in Spain investigating the origins and evolution of early farming communities (7,700–4,500 cal. BP) and how they used fire to create productive agricultural landscapes. Snitker also applies his knowledge of archaeology and fire ecology as an archaeological resource advisor on wildland fire incidents here in Arizona. He works alongside firefighters to protect archaeological sites from wildfires and potentially destructive firefighting activities.

Envrionmental Archaeology, Fire Ecology, GIS, Agent-based modeling, Geoarchaeology

Derek Robinson Member since: Wednesday, November 05, 2014 Full Member Reviewer

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

Roger Cremades Member since: Wednesday, April 01, 2020 Full Member

Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth (2020-2022), the largest global research programme in global change. Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience.

Global change, human-Earth interactions, complex systems.

Lilian Alessa Member since: Friday, May 11, 2007 Full Member Reviewer

Ph.D., Cell Biology, University of British Columbia

Dr. Lilian Alessa, University of Idaho President’s Professor of Resilient Landscapes in the Landscape Architecture program, is also Co-Director of the University of Idaho Center for Resilient Communities. She conducts extensive research on human adaptation to environmental change through resilient design at landscape scales. Much of her work is funded by the National Science Foundation, including projects awarded the Arctic Observing Network, Intersections of Food, Energy and Water Systems (INFEWS) and the Dynamics of Coupled Natural Human Systems programs. Canadian-born and raised, Alessa received her degrees from the University of British Columbia. She also uses her expertise in social-ecological and technological systems science to develop ways to improve domestic resource security for community well-being, particularly through the incorporation of place-based knowledge. Her work through the Department of Homeland Security’s Center of Excellence, the Arctic Domain Awareness Center, involves developing social-technological methods to monitor and respond to critical environmental changes. Lil is a member of the National Science Foundation’s Advisory Committee for Environmental Research and Education and is on the Science, Technology and Education Advisory Committee for the National Ecological Observing Network (NEON). Professor Alessa also teaches a university landscape architecture capstone course: Resilient Landscapes with Professor Andrew Kliskey. Professor Alessa’s collaborative grant activity with Professor Andrew Kliskey, since coming to the university in 2013, exceeds 7 million USD to date. She has authored over a 100 publications and reports and has led the development of 2 federal climate resilience toolbox assessments, the Arctic Water Resources Vulnerability Index (AWRVI) and the Arctic Adaptation Exchange Portal (AAEP).

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Tim Williams Member since: Friday, September 29, 2017

BE (hons) in Natural Resources Engineering

I’m a PhD student in the department of Industrial and Operations Engineering at the University of Michigan.
I am interested in issues related to risk and vulnerability in the developing world, particularly in the face of an uncertain future. In my dissertation I plan to use agent-based simulation to explore issues of food security, livelihood, and well-being of smallholder farmers in Ethiopia under different future scenarios.

Federico Bert Member since: Tuesday, June 25, 2013

Dr

My general research interest is on modeling of complex natural and human systems systems. Specifically, I am interested in modeling agricultural production systems, that blends the complexity, multiplicity of scales and feedbacks of biophysical interactions in natural ecosystems with the additional intricacies of human decision-making. During last years I have coordinated the development and evaluation of an agent-based of agricultural production systems in the Argentinean Pampas.

Shipeng Sun Member since: Monday, September 09, 2013 Full Member Reviewer

PhD

Isaac Ullah Member since: Monday, March 27, 2017 Full Member Reviewer

PhD, Anthropology, Arizona State University, MA, Anthropology, University of Toronto, BSc, Anthropology, University of California, Davis

Isaac IT Ullah, PhD, (Arizona State University 2013) Dr. Ullah is a computational archaeologist who employs GIS and simulation modeling to understand the long-term dynamics of humans and the Earth System. Dr. Ullah is particularly interested in the social and environmental changes surrounding the advent of farming and animal husbandry. His focus is on Mediterranean and other semi-arid landscapes, and he conducts fieldwork in Jordan, Italy, and Kazakhstan. His field work includes survey for and excavation of early agricultural sites as well as geoarchaeological analyses of anthropogenic landscapes. His specialties include landscape evolution, complex adaptive systems science, computational methods, geospatial analysis, and imagery analysis.

Computational Archaeology, Food Production, Forager-Farmer transition, Neolithic, Agro-pastoralism, Erosion Modeling, Anthropogenic Landscapes, Geoarchaeology, Modeling and Simulation, GIS, Imagery Analysis, ABM, Mediterranean

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.