Community

Paulo Guarnieri Member since: Tuesday, November 03, 2015

Researcher

Innovation Networks, University-Industry Links, Management and Policy for Technologies in Emerging Economies (Brazil), Agent-based Simulation.

David Earnest Member since: Saturday, March 13, 2010 Full Member Reviewer

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

William Reed Member since: Tuesday, February 18, 2014

PhD - University of Missouri, MS - University of North Texas, BSEE - University of Texas at Arlington

Interested in how technology innovation impacts people’s lives.

Tika Adhikari Member since: Friday, January 20, 2012 Full Member Reviewer

Ph D, Student

Development of spatial agent-based models to sustainability science and ecosystem service assessment, integration of agent-based model with biophysical process based model, improvement of theory of GIScience and land use change science, development of spatial analytical approach (all varieties of spatial regression), spatial data modeling including data mining, linking processes such as climate change, market, and policy to study patterns.

Kenneth Aiello Member since: Thursday, January 23, 2020 Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Simon Johanning Member since: Monday, July 17, 2017

BMus Composition & Music Technology, MA DDC: Music Technology

IRPact - An integrated agent based modeling approach in innovation diffusion

Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.

Andrea Scalco Member since: Tuesday, February 24, 2015

Ph.D. Student

The Ph.D. research project is mainly focused on the study of the influence of emotional intelligence inside decision-making processes and on the social and emotional aspects of organizations.Furthermore, the research has taken into account the generative science paradigm: in this way, the general aim is the development of social simulations able to account organizational processes related with emotions and with the emotional intelligence from the bottom-up.

Tim Verwaart Member since: Friday, April 15, 2016

Agent-based simulation of social processes related to food and agricultural supply chains

Marta Czarnocka-Cieciura Member since: Wednesday, January 08, 2020

I graduated Bachelor and Master studies at the University of Warsaw, obtaining the diploma in biology at College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP). After graduation I worked as a freelancer in data science and statistics, then worked for 2 years as a data scientist in an IT startup and now I am working as a statistician in The Polish National Information Processing Institute (OPI PIB) in a group analysing condition of science and higher education in Poland. My interests: agent based modelling, evolutionary ecology, statistics, data science, sociology of science.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.