Christian Reynolds Member since: Friday, May 20, 2016

PhD Applied Math

Christian Reynolds is a Public Health Research Fellow at the Rowett Institute of Nutrition and Health, University of Aberdeen, and an adjunct Research Fellow at the Barbara Hardy Institute for Sustainable Environments and Technologies, University of South Australia. Christian’s research examines the economic and environmental impacts of food consumption; with focus upon food waste, sustainable diets, and the political power of food in international relations.
Christian has experience in economic input-output, material flow and environmental (Life Cycle Analysis) modelling and has published peer reviewed articles on these topics.

Birgit Müller Member since: Wednesday, October 26, 2011 Full Member Reviewer

PhD, Head of Junior Research Group POLISES

I am currently head of the Junior Research Group POLISES which uses agent-based models to study intended and unintended effects of global policy instruments on the social-ecological resilience of smallholders. In this project, we focus on the impact of policies targeting climate risk in two common property regimes of pastoralists in Africa (Morocco and Kenya/Ethiopia).
On a conceptual level, I work in an international team of modellers, psychologists and natural scientists on adequate representations of human behaviour in agent-based models. Furthermore, I am interested in how to describe models in an appropriate and standardised manner to increase their comprehensibility and comparison.

Meike Will Member since: Thursday, June 11, 2020

  • since 10/2020 Postdoc at the Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Project BESTMAP - Behavioural, Ecological and Socio-economic Tools for Modelling Agricultural Policy
  • since 03/2017 PhD Student at the Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling; PhD Topic: “Socio-environmental modelling for sustainable development: Exploring the interplay of formal insurance and risk-sharing networks” (SEEMI-Project as part of the Working Group POLISES)
  • 10/2014 - 02/2017 Master of Science in Physics, Leipzig University
  • 10/2011 - 12/2014 Bachelor of Science in Physics, Leipzig University
  • Exploring dynamics of socio-environmental systems
  • Assessing impacts of policy instruments
  • Representing human decision-making in agent-based models
  • Coupling agent-based models and social network analysis

Derek Robinson Member since: Wednesday, November 05, 2014 Full Member Reviewer

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Jacob Nabe-Nielsen Member since: Tuesday, August 27, 2019 Full Member

My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.

Moira Zellner Member since: Friday, December 06, 2013 Full Member

PhD, Urban and Regional Planning, University of Michigan, Ann Arbor

Moira Zellner’s academic background lies at the intersection of Urban and Regional Planning, Environmental Science, and Complexity. She has served as Principal Investigator and Co-Investigator in interdisciplinary projects examining how specific policy, technological and behavioral factors influence the emergence and impacts of a range of complex socio-ecological systems problems, where interaction effects make responsibilities, burdens, and future pathways unclear. Her research also examines how participatory complex systems modeling with stakeholders and decision-makers can support collaborative policy exploration, social learning, and system-wide transformation. Moira has taught a variety of workshops on complexity-based modeling of socio-ecological systems, for training of both scientists and decision-makers in the US and abroad. She has served the academic community spanning across the social and natural sciences, as reviewer of journals and grants and as a member of various scientific organizations. She is dedicated to serving the public through her engaged research and activism.

Applications of agent-based modeling to urban and environmental planning
Participatory modeling

Aniruddha Belsare Member since: Monday, November 07, 2016 Full Member Reviewer

PhD, BVSc & AH

Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019) and later a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University (March 2019 - Jan 2021). He is currently a Computational Ecologist in the Civitello Lab at Emory University.

My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, big horn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), and Lyme disease.

Tuong Manh Vu Member since: Wednesday, May 16, 2018

I received my BSc, MSc, and PhD from the University of Nottingham. My PhD focuses on the Agent-Based Modelling and Simulation (ABMS) of Public Goods Game (PGG) in Economics. In my thesis, a development framework was developed using software-engineering methods to provide a structured approach to the development process of agent-based social simulations. Also as a case study, the framework was used to design and implement a simulation of PGG in the continuous-time setting which is rarely considered in Economics.

In 2017, I joined international, inter-disciplinary project CASCADE (Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies) to further pursue my research interest in strategic modelling and simulation of human-centred complex systems. CASCADE, funded by the US National Institutes of Health (NIH), aims to develop agent-based models and systems-based models of the UK and US populations for the sequential and linked purposes of testing theories of alcohol use behaviors, predicting population alcohol use patterns, predicting population-level alcohol outcomes and evaluating the impacts of policy interventions on alcohol use patterns and harmful outcomes.

Nicholas Magliocca Member since: Monday, January 31, 2011

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Timothy Gooding Member since: Wednesday, May 15, 2013

BA Economics, York University Canada, PhD Economics Kingston University London

After being the economic development officer for the Little/Salmon Carmacks First Nation, Tim used all his spare time trying to determine a practical understanding of the events he witnessed. This led him to complexity, specifically human emergent behaviour and the evolutionary prerequisites present in human society. These prerequisites predicted many of the apparently immutable ‘modern problems’ in society. First, he tried disseminating the knowledge in popular book form, but that failed – three times. He decided to obtain PhD to make his ‘voice’ louder. He chose sociology, poorly as it turns out as he was told his research had ‘no academic value whatsoever’. After being forced out of University, he taught himself agent-based modelling to demonstrate his ideas and published his first peer-reviewed paper without affiliation while working as a warehouse labourer. Subsequently, he managed to interest Steve Keen in his ideas and his second attempt at a PhD succeeded. His most recent work involves understanding the basic forces generated by trade in a complex system. He is most interested in how the empirically present evolutionary prerequisites impact market patterns.

Economics, society, complexity, systems, ecosystem, thermodynamics, agent-based modelling, emergent behaviour, evolution.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.