Bruno Bonté Member since: Monday, February 13, 2017 Full Member

PhD in Computer Science applied to Modelling and Simulation, University of Montpellier 2, Master degree in Computer Science applied to Artificial Intelligence and Decision in Paris 6 University of Pierre and Marie Curry

Master Degree

I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).


Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.


From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).


Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.

My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.

Kristin Crouse Member since: Sunday, June 05, 2016 Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology

I am a PhD Candidate in the Biological Anthropology program at the University of Minnesota. My research involves using agent-based models combined with field research to test a broad range of hypotheses in biology. I have created a model, B3GET, which simulates the evolution of virtual organisms to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I also conduct field research to better model the behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in writing agent-based models for both research in and the teaching of subjects including: biology, genetics, evolution, demography, and behavior.

For my dissertation research, I have developed “B3GET,” an agent-based model which simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in body size, variation in aggression, sperm competition, infanticide, and competition over access to food and mates. B3GET calculates each agent’s ‘decision-vectors’ from its diploid chromosomes and current environmental context. These decision-vectors dictate movement, body growth, desire to mate and eat, and other agent actions. Chromosomes are modified during recombination and mutation, resulting in behavioral strategies that evolve over generations. Rather than impose model parameters based on a priori assumptions, I have used an experimental evolution procedure to evolve traits that enabled populations to persist. Seeding a succession of populations with the longest surviving genotype from each run resulted in the evolution of populations that persisted indefinitely. I designed B3GET for my dissertation, but it has an indefinite number of applications for other projects in biology. B3GET helps answer fundamental questions in evolutionary biology by offering users a virtual field site to precisely track the evolution of organismal populations. Researchers can use B3GET to: (1) investigate how populations vary in response to ecological pressures; (2) trace evolutionary histories over indefinite time scales and generations; (3) track an individual for every moment of their life from conception to post-mortem decay; and (4) create virtual analogues of living species, including primates like baboons and chimpanzees, to answer species-specific questions. Users are able to save, edit, and import population and genotype files, offering an array of possibilities for creating controlled biological experiments.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.