Tika Adhikari Member since: Friday, January 20, 2012 Full Member Reviewer

Ph D, Student

Development of spatial agent-based models to sustainability science and ecosystem service assessment, integration of agent-based model with biophysical process based model, improvement of theory of GIScience and land use change science, development of spatial analytical approach (all varieties of spatial regression), spatial data modeling including data mining, linking processes such as climate change, market, and policy to study patterns.

Rikard Roitto Member since: Tuesday, July 23, 2013

PhD in Religious Studies

Historical studies of Early Christianity. Simulations of social agents aids my interpretation of history.

Garvin Boyle Member since: Sunday, February 03, 2013 Full Member Reviewer

B.Sc, B.Ed.

To understand the nature of sustainable biophysical/economic systems. To determine the necessary and sufficient conditions for sustainability. To explore the trade-off between sustainability and social or economic justice. To investigate the application of the MEP and/or the MEPP to economic systems, or agent-based models of economic systems.

Federico Bert Member since: Tuesday, June 25, 2013


My general research interest is on modeling of complex natural and human systems systems. Specifically, I am interested in modeling agricultural production systems, that blends the complexity, multiplicity of scales and feedbacks of biophysical interactions in natural ecosystems with the additional intricacies of human decision-making. During last years I have coordinated the development and evaluation of an agent-based of agricultural production systems in the Argentinean Pampas.

Davide Secchi Member since: Tuesday, July 08, 2014 Full Member Reviewer

PhD in Business Administration

I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).

My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).

Tuong Manh Vu Member since: Wednesday, May 16, 2018

I received my BSc, MSc, and PhD from the University of Nottingham. My PhD focuses on the Agent-Based Modelling and Simulation (ABMS) of Public Goods Game (PGG) in Economics. In my thesis, a development framework was developed using software-engineering methods to provide a structured approach to the development process of agent-based social simulations. Also as a case study, the framework was used to design and implement a simulation of PGG in the continuous-time setting which is rarely considered in Economics.

In 2017, I joined international, inter-disciplinary project CASCADE (Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies) to further pursue my research interest in strategic modelling and simulation of human-centred complex systems. CASCADE, funded by the US National Institutes of Health (NIH), aims to develop agent-based models and systems-based models of the UK and US populations for the sequential and linked purposes of testing theories of alcohol use behaviors, predicting population alcohol use patterns, predicting population-level alcohol outcomes and evaluating the impacts of policy interventions on alcohol use patterns and harmful outcomes.

Bhakti Onggo Member since: Wednesday, August 07, 2013 Full Member Reviewer

I am an Associate Professor of Data Analytics at Trinity Business School, Trinity College Dublin, The University of Dublin and a Senior Fellow of the Higher Education Academy. I was the Director of Postgraduate Teaching at the Department of Management Science, Lancaster University Management School overseeing MSc programmes in Business Analytics, Management Science and Marketing Analytics, Logistics and Supply Chain Management, e-Business and Innovation, and Project Management.

My research interests lie in the areas of predictive analytics using simulation. I am particularly interested in simulation modelling methodology (symbiotic simulation, hybrid modelling, agent-based simulation, discrete-event simulation) with applications in operations and supply chain management (e.g. hospital, manufacturing, transportation, warehouse) and social dynamics (e.g. diffusion of perception). Currently, I am the associate editor of the Journal of Simulation and the secretary of The OR Society‘s Special Interest Group in Simulation. I am the track coordinator of Agent-Based Simulation for the Winter Simulation Conference 2018.

Derek Robinson Member since: Wednesday, November 05, 2014 Full Member Reviewer

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Philip Murgatroyd Member since: Wednesday, May 11, 2016

PhD, Archaeology - University of Birmingham, MA, Archaeological Research - University of York, BSc, Archaeology - University of Bradford

Patrick Hiesl Member since: Thursday, October 09, 2014

Master of Science in Forest Resources, Bachelor of Sciences in Forest Management

My research focuses on the productivity of harvesting systems in Maine. This research generally includes on the ground observation and the conducting of time and motion studies. I recently started using agent based modelling as a tool to simulate the interaction of various machines and the change in productivity based on specific input variables.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.