Community

Vasileios Basios Member since: Wednesday, May 25, 2016

PhD (Physics of Complex Systems and Statistical Mechanics)

Jesús Zamarreño Member since: Thursday, June 12, 2014

PhD in Physics

Use of ABM in areas related to Systems Engineering and Automatic Control.

Mamadou Diallo Member since: Monday, November 23, 2015 Full Member Reviewer

PhD Student, IT design engineer

Modeling, companion modeling, role playing games, serious games, multi-agent systems, agent-oriented simulation, complex systems, water management, artificial intelligence

Shelby Manney Member since: Friday, September 26, 2014

BA - English, BS - Anthropology (Archaeoinformatics - GIS, Applied Stats, Data Mang.,CRM CERT), BFA - Music, BA - Writing & Rhetoric, MA - Technical, Professional, & Science Writing (TPSW - Cert), MS - Cultural Studies in Applied Sciences (Philosophy of Science - Archaeology/Semiotics Focus), MA - Anthropology

General Question:
Without Central Control is self organization possible?

Specific Case:

Considering the seemingly preplanned, densely aggregated communities of the prehistoric Puebloan Southwest, is it possible that without centralized authority (control), that patches of low-density communities dispersed in a bounded landscape could quickly self-organize and construct preplanned, highly organized, prehistoric villages/towns?

Gunnar Dressler Member since: Monday, February 22, 2016 Full Member Reviewer

PhD Applied Systems Science, Dipl. Biomathematics
  • since April 2017: PostDoc at the Department of Ecological Modeling, Helmholtz-Centre for Environmental Research - UFZ
  • since January 2015: Member of the Junior Research Group POLISES - Global food security policies and their social-ecological side effects in regions prone to global change.
  • 2012-2017 PhD student at the Department of Ecological Modeling, Helmholtz-Centre for Environmental Research - UFZ
  • 2006-2011 Diploma in Biomathematics, Ernst-Moritz-Arndt-University of Greifswald
  1. Dynamics of socio-ecological resource use systems
    • Pasture use in dryland grazing systems under change, effects of new technologies and policy instruments, emergence of polarization between pastoralists (e.g. in terms of livestock numbers).
    • Thresholds of disaster management performance under change, loss of manpower, the role of information as critical resource.
  2. Human decision making in agent-based models.
  3. Remote sensing and GIS.

Amirhoshang Hoseinpour Dehkordi Member since: Friday, January 23, 2015

Master of Science, Bachelor of Science

social simulation, Multiagent Systems, Process Algebra, Game Theory

Valentina Guleva Member since: Monday, November 14, 2016

Modeling and simulation of complex systems, particularly, interbank networks; economic models and critical phenomena modeling

Jorge Santos Member since: Saturday, July 11, 2015

Graduated in Electrical Engineering, Master in Production Enginering, Especialization in Information Systems, Especialization in Production Engineering

Computational Modeling of knowledge diffusion in organizational contexts.

William Rand Member since: Wednesday, October 24, 2007 Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

Jagoda Anna Kaszowska Member since: Tuesday, March 05, 2019 Full Member

Ph.D., Finance

Postdoctoral researcher at Institute of Economics, Polish Academy of Sciences and in Macroprudential Research Division at National Bank of Poland. She graduated in Mathematics (Jagiellonian University, Poland) and in Economics (University of Alcala, Spain). In 2017 she obtained Fulbright Advanced Research Award. In the United States, she carried out research on systemic risk and complex systems. Her doctoral dissertation was about the measurement and modeling of systemic risk using simulation methods and complex systems approach (the results to be published by Palgrave Macmillan US). Previously, she gained experience on agent-based modeling while working with Juan Luis Santos on the European Commission FP 7 MOSIPS project (http://www.mosips.eu/).

Mathematics, complex systems, financial modeling, agent-based modeling, econometrics, macroprudential policies, systemic risk, cental banking

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.