Community

Caryl Benjamin Member since: Wednesday, December 12, 2012

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

Davide Natalini Member since: Saturday, December 07, 2013

MSc in Political Science - Environmental Policies and Economics, University of Torino, Italy, BSc in Political Science - International Relations, University of Bologna, Italy

The Global Resource Observatory (GRO)

The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.

GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.

Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.

Janice Ser Huay Lee Member since: Tuesday, October 14, 2014

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

Erin Stringfellow Member since: Monday, March 21, 2016

MSW

Ms. Stringfellow is a PhD candidate whose goal is to identify ways to build and leverage the natural support systems of people who are experiencing problems related to their illicit drug use. Her current interest is in how these support systems operate in small towns with limited formal resources for quitting. To that end, she recently began conducting in-depth qualitative interviews for her dissertation in a semi-rural county in eastern Missouri. These interviews will be used to build an agent-based model, a type of dynamic simulation modeling that can be used to represent heterogeneous actors with multiple goals and perceptions. As a research assistant and dissertation fellow with the Social System Design Lab, she has also been trained in system dynamics, an aggregate-level dynamic simulation modeling method.

Prior to joining the PhD program, she worked as a research associate at the Boston Health Care for the Homeless Program from 2008-2012. BHCHP is an exemplar model of providing patient-centered care for people who have experienced homelessness. There, she gained significant experience in managing research projects, collecting qualitative and quantitative data, and program evaluation. She earned her MSW from the University of Michigan in 2007, with a focus on policy and evaluation in community and social systems, and a BA in sociology in 2005, also at the University of Michigan. Ms. Stringfellow was born and raised in a small town in Michigan.

Inês Boavida-Portugal Member since: Monday, October 24, 2016

PhD in Geography, research area GIScience, MsC in Territorial Managgement, Bachelor in Geography and Regional Planning

I am a geographer interested in exploring tourism system dynamics and assessing tourism’s role in environmental sustainability using agent-based modelling (ABM). My current work focus is on human complex systems interactions with the environment and on the application of tools (such as scenario analysis, network analysis and ABM) to explore topics systems adaptation, vulnerability and resilience to global change. I am also interested in looking into my PhD future research directions which pointed the potential of Big Data, social media and Volunteer Geographical Information to increase destination awareness.
I have extensive experience in GIS, quantitative and qualitative methods of research. My master thesis assessed the potential for automatic feature extraction from QuickBird imagery for municipal management purposes. During my PhD I have published and submitted several scientific papers in ISI indexed journals. I have a good research network in Portugal and I integrate an international research network on the topic “ABM meets tourism”. I am a collaborator in a recently awarded USA NCRCRD grant project “Using Agent Based Modelling to Understand and Enhance Rural Tourism Industry Collaboration” and applied for NSF funding with the project “Understanding and Enhancing the Resilience of Recreation and Tourism Dependent Communities in the Gulf”.

Tatiana Filatova Member since: Tuesday, October 04, 2011 Full Member

PhD (Cum Laude), Department of Water Engineering and Management, University of Twente, The Netherlands

I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.

I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.

Klaus G. Troitzsch Member since: Wednesday, December 12, 2018 Full Member

Klaus G. Troitzsch was a full professor of computer applications in the social sciences at the University of Koblenz-Landau since 1986 until he officially retired in 2012 (but continues his academic activities). He took his first degree as a political scientist. After eight years in active politics in Hamburg and after having taken his PhD, he returned to academia, first as a senior researcher in an election research project at the University of Koblenz-Landau, from 1986 as full professor of computer applications in the social sciences. His main interests in teaching and research are social science methodology and, especially, modelling and simulation in the social sciences.
Among his early research projects there is the MIMOSE project which developed a declarative functional simulation language and tool for micro and multilevel simulation between 1986 and 1992. Several EU funded projects were devoted to social simulation and policy modelling, the most recent from 2012 to 2015 combining data/text mining and agent-based simulation to analyse the global dynamics of extortion racket systems.
He authored, co-authored, and co-edited several books and many articles in social simulation, and he organised or co-organised a number of national and international conferences in this field. Over nearly three decades he advised and/or supervised more than 55 PhD theses, most of them in the field of social simulation. He offered annual summer and spring courses in social simulation between 1997 and 2009; more recent courses of this kind are now being organised by the European Social Simulation Assiciation and held at different places all over Europe (mostly with his contributions).

Computational social science, structuralist theory reconstruction

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.