Community

Nicholas Magliocca Member since: Monday, January 31, 2011

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

William Rand Member since: Wednesday, October 24, 2007 Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

Tatiana Filatova Member since: Tuesday, October 04, 2011 Full Member

PhD (Cum Laude), Department of Water Engineering and Management, University of Twente, The Netherlands

I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.

I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.

Jonathan Gillligan Member since: Friday, June 16, 2017 Full Member Reviewer

Ph.D. Yale University (Physics) 1991

Integrating social and natural science to study coupled human-natural systems, and particularly the interactions of society with the physical environment under conditions of environmental stress.

Janice Ser Huay Lee Member since: Tuesday, October 14, 2014

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

Grant Snitker Member since: Monday, April 21, 2014 Full Member Reviewer

Grant Snitker, M.A., is a doctoral candidate in archaeology at Arizona State University and a National Science Foundation Graduate Research Fellow. His research focuses on prehistoric uses of controlled fire, settlement history, and environmental change. Snitker approaches these topics through geoarchaeology, archaeological survey methods, GIS modeling, and landscape/fire ecology. He currently works in Spain investigating the origins and evolution of early farming communities (7,700–4,500 cal. BP) and how they used fire to create productive agricultural landscapes. Snitker also applies his knowledge of archaeology and fire ecology as an archaeological resource advisor on wildland fire incidents here in Arizona. He works alongside firefighters to protect archaeological sites from wildfires and potentially destructive firefighting activities.

Envrionmental Archaeology, Fire Ecology, GIS, Agent-based modeling, Geoarchaeology

C Michael Barton Member since: Thursday, May 10, 2007 Full Member Reviewer

PhD University of Arizona (Anthropology/Geosciences), MA University of Arizona (Anthropology/Geosciences), BA University of Kansas (Anthropology)

Professor, School of Human Evolution & Social Change
Professor, School of Complex Adaptive Systems
Affiliate Professor, School of Earth and Space Exploration
Arizona State University

My interests center around long-term human ecology and landscape dynamics with ongoing projects in the Mediterranean (late Pleistocene through mid-Holocene) and recent work in the American Southwest (Holocene-Archaic). I’ve done fieldwork in Spain, Bosnia, and various locales in North America and have expertise in hunter/gatherer and early farming societies, geoarchaeology, lithic technology, and evolutionary theory, with an emphasis on human/environmental interaction, landscape dynamics, and techno-economic change.

Quantitative methods are critical to archaeological research, and socioecological sciences in general. They are an important focus of my research, especially emphasizing dynamic modeling, spatial technologies (including GIS and remote sensing), statistical analysis, and visualization. I am a member of the open source GRASS GIS international development team that is making cutting edge spatial technologies available to researchers and students around the world.

Juan Fernandez-Manjarres Member since: Thursday, November 20, 2014

PhD

My work centers on evaluating the adaptiva capacity and proposing strategies for managing forest under climate change in both temperate and tropical areas.

Christopher Hoving Member since: Monday, May 06, 2019

B.S. Fish and Wildlife, Michigan State University, M.S. Wildlife Ecology, University of Maine - Orono

B.S. in Fish and Wildlife from Michigan State University in 1996. M.S. in Wildlife Ecology from the University of Maine - Orono in 2001. Employed by the Michigan Department of Natural Resources since 2003, first as a field biologist (2003-2008), then statewide endangered species coordinator (2008-2012), and currently as the statewide (climate) adaptation program lead (2012-present). Also currently a graduate student in the Boone and Crockett Quantitative Wildlife Center at Michigan State University (2015-present). Father, gardener, hiker, and amateur myxomycologist.

Human-wildlife social-ecological systems, resilience and learning in complex adaptive systems, climate change, disturbance ecology, and historical ecology

David Nortes Martinez Member since: Tuesday, January 13, 2015

B.A. in economics, M.A in Applied Economic Analysis (environmental economics specialization)

Agent based modelling in water management, especially focused in extreme phenomena such floods and droughts.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.