Community

Isaac Ullah Member since: Monday, March 27, 2017 Full Member Reviewer

PhD, Anthropology, Arizona State University, MA, Anthropology, University of Toronto, BSc, Anthropology, University of California, Davis

Isaac IT Ullah, PhD, (Arizona State University 2013) Dr. Ullah is a computational archaeologist who employs GIS and simulation modeling to understand the long-term dynamics of humans and the Earth System. Dr. Ullah is particularly interested in the social and environmental changes surrounding the advent of farming and animal husbandry. His focus is on Mediterranean and other semi-arid landscapes, and he conducts fieldwork in Jordan, Italy, and Kazakhstan. His field work includes survey for and excavation of early agricultural sites as well as geoarchaeological analyses of anthropogenic landscapes. His specialties include landscape evolution, complex adaptive systems science, computational methods, geospatial analysis, and imagery analysis.

Computational Archaeology, Food Production, Forager-Farmer transition, Neolithic, Agro-pastoralism, Erosion Modeling, Anthropogenic Landscapes, Geoarchaeology, Modeling and Simulation, GIS, Imagery Analysis, ABM, Mediterranean

Nanda Wijermans Member since: Monday, October 11, 2010 Full Member Reviewer

In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’

To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.

David Earnest Member since: Saturday, March 13, 2010 Full Member Reviewer

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

Janice Ser Huay Lee Member since: Tuesday, October 14, 2014

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

Inês Boavida-Portugal Member since: Monday, October 24, 2016

PhD in Geography, research area GIScience, MsC in Territorial Managgement, Bachelor in Geography and Regional Planning

I am a geographer interested in exploring tourism system dynamics and assessing tourism’s role in environmental sustainability using agent-based modelling (ABM). My current work focus is on human complex systems interactions with the environment and on the application of tools (such as scenario analysis, network analysis and ABM) to explore topics systems adaptation, vulnerability and resilience to global change. I am also interested in looking into my PhD future research directions which pointed the potential of Big Data, social media and Volunteer Geographical Information to increase destination awareness.
I have extensive experience in GIS, quantitative and qualitative methods of research. My master thesis assessed the potential for automatic feature extraction from QuickBird imagery for municipal management purposes. During my PhD I have published and submitted several scientific papers in ISI indexed journals. I have a good research network in Portugal and I integrate an international research network on the topic “ABM meets tourism”. I am a collaborator in a recently awarded USA NCRCRD grant project “Using Agent Based Modelling to Understand and Enhance Rural Tourism Industry Collaboration” and applied for NSF funding with the project “Understanding and Enhancing the Resilience of Recreation and Tourism Dependent Communities in the Gulf”.

Bruno Bonté Member since: Monday, February 13, 2017 Full Member

PhD in Computer Science applied to Modelling and Simulation, University of Montpellier 2, Master degree in Computer Science applied to Artificial Intelligence and Decision in Paris 6 University of Pierre and Marie Curry

Master Degree

I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).

PhD

Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.

Post-Doc

From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).

G-EAU

Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.

My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.

Juan Ocampo Member since: Wednesday, September 11, 2019 Full Member

PhD Candidate at Lund School of Economics and Management - Sweden, (2019) MSocSc Organizational Innovation and Entrepreneurship, Copenhagen Business School, (2016) MSc in Industrial Engineering, Universidad de los Andes, (2012) Industrial Engineering, Universidad de los Andes, Colombia

I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.

In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.

Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.

As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead

Kenneth Aiello Member since: Thursday, January 23, 2020 Full Member

Ph.D., Biology and Society, Arizona State University, B.S., Sociology, Arizona State University,, B.S., Biology, Arizona State University

Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.

Kimberly Rogers Member since: Wednesday, December 06, 2017 Full Member Reviewer

Environmental Engineering, PhD, Geological Sciences, Physical Geography, BSc, Music and Music Production, AASc

Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.

Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.