Community

Displaying 10 of 93 results agent-based-modeling clear

Andrew Gillreath-Brown Member since: Thu, Jul 25, 2019 at 03:42 PM Full Member

A.S., Pre-Engineering, Wallace State Community College, B.S., Mathematics and Natural Sciences, Freed-Hardeman University, B.A., Religious Studies, Freed-Hardeman University, B.A., Anthropology, Middle Tennessee State University, M.S., Applied Geography: Environmental Archaeology, University of North Texas

I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.

My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.

In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).

Simon Johanning Member since: Mon, Jul 17, 2017 at 09:51 AM

BMus Composition & Music Technology, MA DDC: Music Technology

IRPact - An integrated agent based modeling approach in innovation diffusion

Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.

Eric Boria Member since: Sat, Mar 21, 2020 at 01:40 AM Full Member

Ph.D. Sociology, Master in Urban Planning and Policy, B.A. Biology and Sociology

Eric has graduate degrees in urban planning and policy and sociology and an undergraduate degree in biology. He has worked on multiple collaborative and interdisciplinary projects and is skilled at engaging communities and other stakeholders. He is adept at qualitative research and has earned a Certificate in Geospatial Analysis and Visualization, demonstrating proficiency in Adobe Suite, ArcGIS, agent-based modeling and system dynamics modeling. He is currently writing manuscripts for publication based on his work on motivating energy retrofit decisions, energy-related urban planning, municipal decision-making on infrastructure investments, and other work on resilience and sustainability.

Conducts urban planning and policy research on energy efficiency, environmental, and infrastructure decision making.

Marco Janssen Member since: Thu, May 10, 2007 at 12:56 AM Full Member Reviewer

M.A., Econometrics and Operations Research, March, Erasmus University, Rotterdam, PhD., Mathematics, 29 November, Maastricht University (Supervisors: J. Rotmans and O.J. Vrieze)

I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.

Morteza Mahmoudzadeh Member since: Sun, May 10, 2015 at 06:30 PM Full Member Reviewer

Dr.

Dr. Morteza Mahmoudzadeh is an assitant professor at the University of Azad at Tabriz in the Department of Managent and the director of the Policy Modeling Research Lab. Dr. Mahmoudzadeh did a degree in Software Engineering and a PhD in System Sciences. Dr. Mahmoudzadeh currently works on different regional and national wide projects about modeling sustaiblity and resilience of industrial ecosystems, innovation networks and socio-environmental systems. He also works on hybrid models of opinion dynamics and agent based models specifically in the field of modeling customers behavior and developing managerial tools for strategic marketing policy testing. His team at Policy Modeling Research Lab. currently work on developing a web based tool with python for systems modeling using system dynamics, Messa framework for agent-based modeling and Social Networks Analysis.

Modeling Complex systems, Simulation: System Dynamics, Agent Based and Discrete Event
System and Complexity Theory

Christopher Watts Member since: Mon, Mar 14, 2011 at 11:23 AM Full Member

PhD Warwick Business School, MSc Operational Research, University of Southampton, Post-graduate Diploma in Theology, University of Cambridge, MA / BA (Hons.) Philosophy, University of Cambridge

I am an agent-based simulation modeler and social scientist living near Cambridge, UK.

In recent years, I have developed supply chain models for Durham University (Department of Anthropology), epidemiological models for the Covid-19 pandemic, and agent-based land-use models with Geography PhD students at Cambridge University.

Previously, I spent three years at Ludwig-Maximillians University, Munich, working on Human-Environment Relations and Sustainability, and over two and a half years at Surrey University, working on Innovation with Nigel Gilbert in the Centre for Research in Social Simulation (CRESS). The project at Surrey resulted in a book in 2014, “Simulating Innovation: Computer-based Tools for Rethinking Innovation”. My PhD topic, modeling human agents who energise or de-energise each other in social interactions, drew upon the work of sociologist Randall Collins. My multi-disciplinary background includes degrees in Operational Research (MSc) and Philosophy (BA/MA).

I got hooked on agent-based modeling and complexity science some time around 2000, via the work of Brian Arthur, Stuart Kauffman, Robert Axelrod and Duncan Watts (no relation!).

As an agent-based modeler, I specialize in NetLogo. For data analysis, I use Excel/VBA, and R, and occasionally Python 3, and Octave / MatLab.

My recent interests include:
* conflict and the emergence of dominant groups (in collaboration with S. M. Amadae, University of Helsinki);
* simulating innovation / novelty, context-dependency, and the Frame Problem.

When not working on simulations, I’m probably talking Philosophy with one of the research seminars based in Cambridge. I have a particular interests when these meet my agent-based modeling interests, including:
* Social Epistemology / Collective Intelligence;
* Phenomenology / Frame Problem / Context / Post-Heideggerian A.I.;
* History of Cybernetics & Society.

If you’re based near Cambridge and have an idea for a modeling project, then, for the cost of a coffee / beer, I’m always willing to offer advice.

John Murphy Member since: Wed, Aug 31, 2011 at 11:48 AM Full Member Reviewer

PhD. Anthropology, University of Arizona (2009), MA Education, Ohio State University (1993)

My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.

Aaron Bramson Member since: Tue, Jul 01, 2014 at 12:36 PM Full Member

Ph.D. Philosophy and Political Science, University of Michigan, M.S. Mathematics, Northeastern University, B.S. Economics, University of Florida, B.A. Philosophy, University of Florida

Dr. Aaron Bramson is principal investigator of the AI Strategy Center of GA technologies in Tokyo, Japan, as well as an Affiliate Researcher in the Department of General Economics of Ghent University in Belgium. His research specialty is complexity science, especially methodologies for modeling complex systems. Research topics span across disciplines: measures of polarization and diversity, belief measure interoperability, integrating geospatial and network analyses for measuring walkability and neighborhood identification, and myriad applications in artificial intelligence and data visualization. He received his Ph.D. from the University of Michigan in a joint program with the departments of Political Science and Philosophy as well as an M.S. in Mathematics from Northeastern University.

Complex systems, agent-based modeling, social simulation, computational models, network models, network theory, methodology, philosophy of science, ontology, epistemology, ethics, artificial intelligence, big data analysis, geospatial data analysis,

Davide Secchi Member since: Tue, Jul 08, 2014 at 10:58 PM Full Member Reviewer

PhD in Business Administration

I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).

My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).

Nicholas Magliocca Member since: Wed, Mar 21, 2018 at 01:51 PM Full Member

My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.

Displaying 10 of 93 results agent-based-modeling clear

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept