Community

Corinna Elsenbroich Member since: Wednesday, January 18, 2017

PhD Computer Science

Corinna is a lecturer in the Department of Sociology. She joined the Centre for Research in Social Simulation at the in August 2008 as a Research Fellow. Her academic background is in Philosophy (LSE, BSc MSc) and Computer Science (KCL,PhD), where her PhD Instinct for Detection developed a logic for abductive reasoning.

Currently Corinna is the PI on an AHRC Research Grant on collective reasoning in agent-based modelling, titled Collective Reasoning as a Moral Point of View. Her research interests are decision mechanisms, in particular collective decision-making, context dependency of decisions and methodological and epistemological aspects of agent-based modelling and social simulation. She has applied collective decision making to the analysis to the weakening of the Mafia in Southern Italy within the GLODERS project and published a book Modelling Norms, co-authored with Nigel Gilbert, providing a systematic analysis of the contribution of agent-based modelling to the study of social norms and deviant behaviour. Recently Corinna has been developing a teaching stream within CRESS with a periodically running short course Agent-based Modelling for the Social Scientist and the MSc Social Science and Complexity.

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Robi Ragan Member since: Monday, February 18, 2013 Full Member Reviewer

PhD. Economics, MA Political Science

My research centers on isolating how and to what extent political institutions themselves shape policy. I use computational modeling (agent-based and simulation) to gain theoretical leverage on the issue. This approach allows me to place groups of actors with given preferences into different institutional settings in order to gauge the effect of the rules of the game on political outcomes. Most of my research examines the ways in which legislative processes affect issues of political economy, such as income redistribution.

Arpan Jani Member since: Monday, September 30, 2019

Arpan Jani received his PhD in Business Administration from the University of Minnesota in 2005. He is currently an Associate Professor in the Department of Computer Science and Information Systems at the University of Wisconsin – River Falls. His current research interests include agent-based modeling, information systems and decision support, behavioral ethics, and judgment & decision making under conditions of risk and uncertainty.

agent-based modeling; behavioral ethics; information systems and decision support; project management; judgment & decision making under conditions of risk and uncertainty.

Gudrun Wallentin Member since: Friday, October 28, 2016 Full Member

MSc. in GIS, Mag. in Ecology

Positions held today:
• Associate Professor for Geoinformatics and Ecology at the University of Salzburg (since 2017)
• UNIGIS Program Director (since 2020)
• Head of the Research Group “Spatial Simulation” (since 2013)

Major academic milestones:
• Assistant Professor, Department for Geoinformatics, University of Salzburg (2013-2017)
• Associate Faculty in the FWF Doctoral College “GIScience” (2013-2017)
• Director of Studies UNIGIS MSc distance learning programs, University of Salzburg (2012-2020)
• PhD at the University of Innsbruck on ecological modelling (2011)
• Research Assistant Austrian Academy of Sciences, GIScience Institute (2007-2011)
• Magistra in Ecology, Univ. of Innsbruck (2001) and MSc in GIS, Univ. of Edinburgh (2006)

Spatially-explicit simulation modelling of complex, ecological systems: * the added value of spatially-explicit modelling * Hybrid agent-based and system-dynamics modelling in ecology * Agent-based models, Cellular Automata

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

John Bradford Member since: Tuesday, November 04, 2014

Ph.D. Sociology, University of Tennessee

Currently working on agent-based modeling of wealth and income distributions; formalizing some of Luhmann’s theories of communication; modeling social norms; and modeling generative mechanisms of status hierarchies.

Federico Bert Member since: Tuesday, June 25, 2013

Dr

My general research interest is on modeling of complex natural and human systems systems. Specifically, I am interested in modeling agricultural production systems, that blends the complexity, multiplicity of scales and feedbacks of biophysical interactions in natural ecosystems with the additional intricacies of human decision-making. During last years I have coordinated the development and evaluation of an agent-based of agricultural production systems in the Argentinean Pampas.

Matteo Richiardi Member since: Wednesday, February 01, 2017

PhD

Matteo Richiardi is an internationally recognised scholar in  micro-simulation modelling (this includes dynamic microsimulations and agent-based modelling). His work on micro-simulations involves both methodological research on estimation and validation techniques, and applications to the analysis of distributional outcomes, the functioning of the labour market and welfare systems. He is Chief Editor of the International Journal of Microsimulation. Examples of his work are the two recent books “Elements of Agent-based Computational Economics”, published by Cambridge University Press (2016), and “The political economy of work security and flexibility: Italy in comparative perspective”, published by Policy Press (2012).

Reuven Lerner Member since: Wednesday, July 10, 2013

SB, MIT, Computer science and engineering, PhD Candidate, Northwestern, Learning Sciences

I’m researching agent-based modeling from a social perspective – to see how people

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.