Community

Geo Kocheril Member since: Tuesday, October 01, 2019

Research fellow, PhD Candidate (University of Kassel)

Energy system transiton modelling * stakeholder and market modelling, governance and policy modelling, * agent-based modelling (ABM), optimisation, * model coupling, open and integrative modelling framework, * open source, S4F

Andrew Crooks Member since: Monday, February 09, 2009 Full Member

Andrew Crooks is an Associate Professor with a joint appointment between the Computational Social Science Program within the Department of Computational and Data Sciences and the Department of Geography and GeoInformation Science, which are part of the College of Science at George Mason University. His areas of expertise specifically relate to integrating agent-based modeling (ABM) and geographic information systems (GIS) to explore human behavior. Moreover, his research focuses on exploring and understanding the natural and socio-economic environments specifically urban areas using GIS, spatial analysis, social network analysis (SNA), Web 2.0 technologies and ABM methodologies.

GIS, Agent-based modeling, social network analysis

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

Ismael Chaile Member since: Wednesday, December 11, 2013 Full Member Reviewer

Ph.D. with research line in Multi-agent systems and Distributed systems (robots, IoT), Master In Science in Micro and Nanoelectronic, Master in General Direcction and Strategic Planning, Electronic Engineer

I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).

Kit Martin Member since: Thursday, January 15, 2015 Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage: https://kitcmartin.com

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Sylvie Geisendorf Member since: Friday, October 06, 2017

Dr., Prof.

Topics:

Behavioural aspects of environmental problems: Use of evolutionary approaches to investigate how people react to environmental policy.
Resource scarcity
Climate-economic Models: Understand how economic agents think and decide about climate change and climate protection
Sustainable Development

Methods:

Agent-Based-Modeling
Genetic algorithms
Evolutionary economics
Behavioural economics
Ecological economics
Complexity Theory

Eo SeungWon Member since: Thursday, August 03, 2017 Full Member Reviewer

B.A. Urban Studies, UC Berkeley., MSc. Geographic Information Science, Seoul National University.

GIS enthusiast and ABM practitioner

Urban Mobility
Machine Learning
Social Network Analysis
Crime Simulation

Jochem Douw Member since: Monday, November 09, 2015

MSc

Agent-based modelling of sustainable residential electricity consumer behaviour

Morteza Mahmoudzadeh Member since: Sunday, May 10, 2015 Full Member Reviewer

Dr.

Dr. Morteza Mahmoudzadeh is an assitant professor at the University of Azad at Tabriz in the Department of Managent and the director of the Policy Modeling Research Lab. Dr. Mahmoudzadeh did a degree in Software Engineering and a PhD in System Sciences. Dr. Mahmoudzadeh currently works on different regional and national wide projects about modeling sustaiblity and resilience of industrial ecosystems, innovation networks and socio-environmental systems. He also works on hybrid models of opinion dynamics and agent based models specifically in the field of modeling customers behavior and developing managerial tools for strategic marketing policy testing. His team at Policy Modeling Research Lab. currently work on developing a web based tool with python for systems modeling using system dynamics, Messa framework for agent-based modeling and Social Networks Analysis.

Modeling Complex systems, Simulation: System Dynamics, Agent Based and Discrete Event
System and Complexity Theory

Harsha Krishna Member since: Tuesday, July 10, 2018 Full Member

M.Tech

I develop simulation tools for generating what-if scenarios for decision making. I predominantly use Agent-Based Modelling (ABM) technique as most of my simulations model complex systems. In some cases, I have extended existing tools with modifications to model the given system. Although the tools are meant for research purposes, I have followed industry friendly delivery mechanisms, such as unit-tests, automated builds and delivery on cloud platforms.

  • Agent-Based Modelling
  • Complex Social Systems
  • Gaming-Simulations
  • Health care logistics
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.