Tamara Hochstrasser Member since: Tuesday, April 04, 2017


Angelos Chliaoutakis Member since: Thursday, March 26, 2020

Ph.D., Computer Engineering, Technical University of Crete, Greece

Angelos Chliaoutakis received his PhD in Electronic & Computer Engineering in 2020 at Technical University of Crete (TUC), Greece. During 2005-2020 he was a research assistant at the Intelligent Systems Laboratory of TUC, participating in several research projects associated with NLP, semantic similarity and ontology based information systems. Since 2010 he is also a research assistant at the Laboratory of Geophysical - Satellite Remote Sensing and Archaeo-environment (GeoSat ReSeArch Lab) of the Institute for Mediterranean Studies of Foundation for Research and Technology (IMS-FORTH), were he is involved in various research projects related to the full-stack development of Geographical Information Systems (GIS), web-based GIS applications and Geoinformatics in the cultural and archaeological domain. This ultimately transformed his interest and research direction towards computational archaeology, in particular, agent-based modeling and simulation, while intertwining ideas and approaches from Artificial Intelligence, Multi-agent Systems and GIS.

Research activities range between Computer Science, Information Systems and Natural Language Processing (NLP), Agent-based modeling/simulation (ABM), Artificial Intelligence (AI) and Multi-Agent Systems (MAS) and Geographical Information Science (GIScience).

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Jasen Asia Member since: Wednesday, August 10, 2016


Understanding agent-based modeling

Pierre Bommel Member since: Tuesday, April 05, 2011 Full Member Reviewer


I am a modeler scientist at CIRAD. As member of the Green Research Unit, I contribute to promote the Companion Modeling approach ( Through the development of CORMAS, a Framework for Agent-Based Models (, I have been focusing on the development and the use of multi-agent simulations for renewable resource management issues. I have been based several years in Brazil, at the University of Brasilia and at the PUC-Rio University, until 2014. I developed models related to environmental management, such as breeding adaptation to drought in the Uruguay or as breeding and deforestation in the Amazon. I am currently based in Costa Rica, firstly at the University of Costa Rica working on adaptation of agriculture and livestock to Climate Changes, and now at CATIE, working on coffe rust.

Participatory modeling, including collective design of model and interactive simulation

David Dixon Member since: Sunday, March 01, 2009

PhD Economics, MS Physics, BA Physics

Exhaustible natural resources
Fishery resources
Network game theory models
Agent-based models

Emma Norling Member since: Tuesday, December 03, 2013

PhD (Computer Science) The University of Melbourne (2009)

Agent-based models of human behaviour, from cognitive modelling through to cognitively-rich social simulation.

Mazaher Kianpour Member since: Thursday, October 25, 2018 Full Member

B.Sc., Computer Engineering, Payame Noor University, M.Sc., Computer Engineering, Shahid Beheshti University, Ph.D., Information Security, Norwegian University of Science and Technology

Mazaher Kianpour is a PhD candidate at NTNU. He holds a Bachelor’s degree in Computer Engineering (Software) from the Payame Noor University. He obtained his Master’s degree in Architecture of Computer Systems from Shahid Beheshti University, Tehran, Iran. He started his PhD in Information Security at NTNU in May 2018. His PhD research lies at the intersection of economics and information security with a socio-technical perspective. He has several years of work experience at Tehran University of Medical Sciences, and his professional training includes Computer Networks, Cybersecurity and Risk Management.

My main research interest is modelling of information security, business operations and deterrents in complex ICT ecosystem. I will in particular focus on the complex interaction between various stakeholders and actors in the information security business domain. In order to model and better understand the information security ecosystem, I rely on agent-based simulation and quantitative modelling techniques such as stochastic modelling, discrete event simulations and game theory. Of particular interest is to gain increased understanding on how various security threats and measures influence business operations in the digital ecosystem.

Beth Fulton Member since: Thursday, January 12, 2012 Full Member Reviewer


Using agent based models to look at ecosystem-based or integrated management of oceans and coastal zones

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.