Peer-Olaf Siebers Member since: Friday, February 15, 2019 Full Member

I am an Assistant Professor at the School of Computer Science, University of Nottingham, UK.

My main research interest is the application of computer simulation to study human-centric complex adaptive systems. I am a strong advocate of Object Oriented Agent-Based Social Simulation. This is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Operations Research, Geography, and Computer Science. My current research focusses on Urban Sustainability and I am a co-investigator in several related projects and a member of the university’s “Sustainable and Resilient Cities” Research Priority Area management team.

Christopher Hoving Member since: Monday, May 06, 2019

B.S. Fish and Wildlife, Michigan State University, M.S. Wildlife Ecology, University of Maine - Orono

B.S. in Fish and Wildlife from Michigan State University in 1996. M.S. in Wildlife Ecology from the University of Maine - Orono in 2001. Employed by the Michigan Department of Natural Resources since 2003, first as a field biologist (2003-2008), then statewide endangered species coordinator (2008-2012), and currently as the statewide (climate) adaptation program lead (2012-present). Also currently a graduate student in the Boone and Crockett Quantitative Wildlife Center at Michigan State University (2015-present). Father, gardener, hiker, and amateur myxomycologist.

Human-wildlife social-ecological systems, resilience and learning in complex adaptive systems, climate change, disturbance ecology, and historical ecology

Muaz Niazi Member since: Sunday, June 07, 2009 Full Member Reviewer

BE (Hons), MS CS, PhD

Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.

Julia Kasmire Member since: Wednesday, May 09, 2012 Full Member

MSc in Evolution of Language and Cognition, BA in Linguistics

About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.

Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence

Shelby Manney Member since: Friday, September 26, 2014

BA - English, BS - Anthropology (Archaeoinformatics - GIS, Applied Stats, Data Mang.,CRM CERT), BFA - Music, BA - Writing & Rhetoric, MA - Technical, Professional, & Science Writing (TPSW - Cert), MS - Cultural Studies in Applied Sciences (Philosophy of Science - Archaeology/Semiotics Focus), MA - Anthropology

General Question:
Without Central Control is self organization possible?

Specific Case:

Considering the seemingly preplanned, densely aggregated communities of the prehistoric Puebloan Southwest, is it possible that without centralized authority (control), that patches of low-density communities dispersed in a bounded landscape could quickly self-organize and construct preplanned, highly organized, prehistoric villages/towns?

Morteza Mahmoudzadeh Member since: Sunday, May 10, 2015 Full Member Reviewer


Dr. Morteza Mahmoudzadeh is an assitant professor at the University of Azad at Tabriz in the Department of Managent and the director of the Policy Modeling Research Lab. Dr. Mahmoudzadeh did a degree in Software Engineering and a PhD in System Sciences. Dr. Mahmoudzadeh currently works on different regional and national wide projects about modeling sustaiblity and resilience of industrial ecosystems, innovation networks and socio-environmental systems. He also works on hybrid models of opinion dynamics and agent based models specifically in the field of modeling customers behavior and developing managerial tools for strategic marketing policy testing. His team at Policy Modeling Research Lab. currently work on developing a web based tool with python for systems modeling using system dynamics, Messa framework for agent-based modeling and Social Networks Analysis.

Modeling Complex systems, Simulation: System Dynamics, Agent Based and Discrete Event
System and Complexity Theory

Lisa Frazier Member since: Thursday, October 08, 2015

MPH, PhD Candidate

My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.

Eric Kameni Member since: Monday, October 19, 2015 Full Member Reviewer

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Talal Alsulaiman Member since: Friday, February 27, 2015

Bachelor of Science in Systems Engineering, Master of Science in Industrial Engineering, Master of Science in Financial Engineering

In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.

Nicholas Magliocca Member since: Wednesday, March 21, 2018 Full Member

My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.