Community

Ismael Chaile Member since: Wednesday, December 11, 2013 Full Member Reviewer

Ph.D. with research line in Multi-agent systems and Distributed systems (robots, IoT), Master In Science in Micro and Nanoelectronic, Master in General Direcction and Strategic Planning, Electronic Engineer

I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).

Daniel Ciganda Member since: Friday, July 15, 2016

MA.

I use Agent-Based Models to understand contemporary fertility decision making in below-replacement fertility contexts.

Paul Van Liedekerke Member since: Thursday, May 31, 2018

Interested in numerical models and new conceptual ideas, applications from industry to medicine.

I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.

I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.

The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).

Nicholas Magliocca Member since: Monday, January 31, 2011

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Susan Boerma Member since: Wednesday, October 23, 2013

MSc

Using Bayesian statistics for improving Agent based models and visa versa.

Guido Fioretti Member since: Tuesday, April 24, 2012 Full Member Reviewer

PhD

Guido Fioretti, born 1964, graduated in Electronic Engineering in 1991 at La Sapienza University, Rome. In 1995, he received a PhD in Economics from this same university. Guido Fioretti is currently a lecturer of Organization Science at the University of Bologna.

I am interested in combining social with cognitive sciences in order to model decision-making facing uncertainty. I am particularly interested in connectionist models of individual and organizational decision-making.

I may make use of agent-based models, statistical network analysis, neural networks, evidence theory, cognitive maps as well as qualitative research, with no preference for any particular method. I dislike theoretical equilibrium models and empirical research based on testing obvious hypotheses.

Gonzalo Villa-Cox Member since: Sunday, June 08, 2014

Master in Science of Economics and Finance, Bachellor of Economics and Finance

Pierre Bommel Member since: Tuesday, April 05, 2011 Full Member Reviewer

PhD

I am a modeler scientist at CIRAD. As member of the Green Research Unit, I contribute to promote the Companion Modeling approach (http://www.commod.org). Through the development of CORMAS, a Framework for Agent-Based Models (http://cormas.cirad.fr), I have been focusing on the development and the use of multi-agent simulations for renewable resource management issues. I have been based several years in Brazil, at the University of Brasilia and at the PUC-Rio University, until 2014. I developed models related to environmental management, such as breeding adaptation to drought in the Uruguay or as breeding and deforestation in the Amazon. I am currently based in Costa Rica, firstly at the University of Costa Rica working on adaptation of agriculture and livestock to Climate Changes, and now at CATIE, working on coffe rust.

Participatory modeling, including collective design of model and interactive simulation

Nathan Rollins Member since: Wednesday, August 27, 2008 Full Member Reviewer

I am a Ph.D. student studying the interactions between external regulations and social norms in natural resource management and international development. In particular, I am looking to use mixed methods research, including ethnographic research, field experiments, and agent-based computational models to explore the sustainability of market-based interventions and their possible perverse outcomes.

Volker Grimm Member since: Wednesday, July 18, 2007 Full Member Reviewer

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.