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Within this document, we provide a description of the Agent-Base Model (ABM) "Creating Intelligent 

Agents" which is based on the updated Overview, Design concepts, and Details (ODD) protocol 

developed by Grimm et al. (2020). The objective of this ODD is to provide the reader a human 

comprehensible description of the workflow, code, and intent behind the design of the ABM. The ABM 

was designed using NetLogo (Wilensky, 1999, Version 6.1) and provides the user with a Graphical 

User Interface (GUI) as presented in Figure 1. The model itself can be found at: https://tinyurl.com/ML-

Agents. 

 

Figure 1 - Graphical User Interface of the “Creating Intelligent Agents” model. From left to right: input 

parameters, agents within their artificial world, and aggregate model outputs. 

1. PURPOSE AND PATTERNS 

The primary purpose of this model is to demonstrate the methods by which intelligent agents (i.e., 

agents which utilize machine learning techniques) can be incorporated into an ABM. It does so by 

contrasting agents using a priori rules with agents that evolve physical characteristics over time and 

agents that learn successful and unsuccessful decisions over time. The agents operate in an extension 

of the Sugarscape (Epstein and Axtell, 1996) ABM that has been used to explore migration, trade, 

wealth inequality, disease processes, sex, culture, and conflict. Conflict between two groups, where 

friends are in the same group and enemies are in the other, is the focus of the model as the individual 

agents seek to accumulate wealth in the form of sugar. The Sugarscape model, "Sugarscape 2 

Constant Growback" (LI and Wilensky, 2009), included in the NetLogo model library was the foundation 

for this model's development. We chose Sugarscape (Epstein and Axtell, 1996) as it is well known and 
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understood in the agent-based modeling community and therefore would allow us to demonstrate how 

different learning techniques can be incorporated into an ABM without having to describe in detail the 

model itself. The secondary purpose of this model is to judge whether resources (software development 

time, wall clock time, and analytic time) expended on using intelligent agents is worth the effort. The 

final purpose of this model is to determine which of the four types of agents (i.e., Rule M, Q-Learning, 

SARSA and EC agents) are more successful, where success is measured by accumulated wealth (i.e., 

sugar). 

Pattern 1: It is only the third purpose that provides an observable outcome from the model. The ability 

of the agents with a priori assigned rules (i.e., Rule M) is placed in conflict with the three types of 

learning agents (i.e., Q-Learning, SARSA, and EC). These types of learning agents are also placed in 

conflict with each other. From these conflicts, a variety of meta-patterns can be measured and 

compared. This involves a pairwise comparison of the four agent types for outcomes of mean wealth, 

mean vision, mean metabolism, cumulative combat deaths, cumulative starvation deaths, mean age, 

and maximum age (see Figure 1 and Section 7 for more details). 

2. ENTITIES, STATE VARIABLES, AND SCALES 

 

2.1. Entities 

There are seven types of entities included in this model. Four are agents, one is a collective, one is a 

grid cell, and one is environmental (see Section 5 for entity initialization details). 

1) Standard (Rule M)1 agents have hard coded rules imposed on them a priori to the model 

execution. The rule set does not change during model execution. Replacement agents are 

assigned initial attribute values using the same process used by agents at the beginning of the 

model (Section 7.1). 

2) Evolutionary Computing (EC) agents also have hard coded rules imposed on them a priori to 

the model execution. However, some of the attributes of replacement agents are based upon 

the most successful agents of a collective rather than random values (which will be discussed in 

more detail in Section 7.2). 

3) Q-Learning agents have no a priori assigned rules. Instead, they have a decision matrix 

showing the actions they can take, given their state (see Section 7.5). Initially the matrix is 

blank, and agents make random decisions for which they receive a reward from an a priori 

provided reward table. Over time the decision table changes based on the best decisions and 

random explorations of the agent. These agents may ignore the decision table for future actions 

(within reinforcement learning this is known off-policy decision-making, see Section 7.3). 

4) State-Action-Reward-State-Action (SARSA) Learning agents are an extension of Q-Learning 

agents. They are much the same, except their decisions use the same policy that generates the 

current action to generate the next action (within reinforcement learning this is known as on-

policy decision-making, see Section 7.4). 

5) Breed (Collective) are groups of agents of the same agent type (Section 4.10). 

6) Grid Cells (Patches - A NetLogo term) are spatial locations representing equal portions of a two-

dimensional world. See Section 5 for initialization details. 

7) Tick (Environmental) is a discrete interval (Stevens, 1946) unit of equal time. 

                                                                 
1
 Rule M refers to the designation of this type of agent used by Epstein and Axtell (1996). 
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2.2. State Variables and Scale 

There are two Collectives (Breeds - A NetLogo term) active in the model during initialization and the 

execution of the model; these are labeled "Group A" and "Group B." Each collective holds only one type 

of agent (i.e., Rule M, Q-Learning which is chosen by the modeler at model initialization) and both 

Collectives can have the same entity type (e.g., Q-Learning and Q-Learning). All agents (i.e., Rule M, 

EC, Q-Learning, and SARSA), are each initialized (Section 5) with different attribute values. The 

attributes common amongst the agents are sugar, metabolism, vision, and age. Q-Learning and 

SARSA agents have additional attributes that hold their current state and action (which are discussed 

more in Sections 7.3 and 7.4 respectively). The Q-Learning and SARSA learning agents also have a Q-

Value matrix that represents their accumulated tacit knowledge of past decisions. Grid Cells are 

initialized (see Section 5) with sugar values (psugar) that change during model execution. The sugar 

values represent two piles, one in the northeast corner and the other in the southwest corner of a 

non-toroidal grid sized fifty-by-fifty cells. Finally, Ticks are temporal intervals of equal value that 

increase monotonically during model execution. Each Tick has no equivalency to wall clock time. The 

values these state variables can assume are listed in Table 1. 

Table 1 - Model State Variables 

Attribute Name Represents Type Value Range 

action The current action of the agent. Integer [0,3] 

age The number of ticks an agent has existed. Integer [0,20000] 

breed Which of the two groups an agent belongs to. Ordinal {Group A, Group B} 

metabolism The amount of sugar that each agent loses 
(consumes) each tick. 

Integer [1,4] 

psugar The amount of sugar in a Grid Cell. Decimal [0,4] step 0.1 

q-values The matrix of Q-Values. (state versus action) Matrix [3x4] of Float [0,+∞) 

state The current state of the agent. Integer [0,2] 

sugar The amount of sugar the agent has. Decimal [0.1,+∞) step 0.1 

tick A unit of equal time. Integer [0,20000] 

vision The distance (in cells) that an agent can see in 
the horizontal and vertical directions directly in 
line with the agent's cell location (von Neumann 
neighborhood). 

Integer [1,6] 

 

3. PROCESS OVERVIEW AND SCHEDULING 

After initialization (see Section 5), the model proceeds in equal interval (Ticks) of time. At each time 

step, an agent is selected using a random uniform distribution from all agents (both Collectives) that 

have yet to be selected during the current time interval. This continues until all agents have been 

selected. Each of the four types of agents takes a different path in the model execution as show in 

Figure 2 (and discussed in more detail in Section 7). There are only two agent types in use during any 

model run so only two of these paths will be followed. The Rule M agent, as noted above (Section 2.1) 

is based on the original Sugarscape model (Epstein and Axtell, 1996), attacks if it is in a Strong position 

(see Section 4.3) or Jumps to a random Grid Cell if not. The EC agent is similar but will Retreat if in a 

Weak position (see Section 4.3). The Q-Learning agent's decision path is more complicated. It has a 

fourth available action of staying stationary, and makes its decision (i.e., Attack, Retreat, Jump, or Stay) 

based on its experience of the three state types (i.e., Strong, Weak, No Contact) using an off-policy 

method to select an action (see Section 2.1). The SARSA agent's path is the same as the Q-Learning 

agent's with one difference, it uses an on-policy method to select an action (see Section 2.1). After all 
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agents have been selected, the execution paths of the agents converge with the replacement of agents 

that have been attacked (i.e., killed). EC agents have an additional step whereby new agents are based 

on mutated versions of the wealthiest agents of their Collective (see Section 4.3). The model ends 

when either all agents in a Collective are dead or maximum time has been reached. 

 

Figure 2 - Model execution flowchart. 
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4. DESIGN CONCEPTS 

 

4.1. Basic principles 

The model was developed to demonstrate the differences between traditional rule-based approaches 

commonly used within agent-based modeling and learning agents and to demonstrate how learning 

agents can be integrated into an agent-based model. The design of the simple agents, (i.e., Rule M), 

was based on the Sugarscape (Epstein and Axtell, 1996) model. The EC agents came from both 

Sugarscape (Epstein and Axtell, 1996) and Genetic Algorithms (GA) more generally, that were first 

described by Holland (1975). Q-Learning and SARSA agents use Reinforcement Learning (Sutton, 

1988; Sutton and Barto, 2018). These four approaches are realized at the level of individual agents and 

are implemented by different sub-models (see Section 7). During a model execution, no more than two 

Collectives (Section 4.10) with each having only one agent type (Section 2.1) such as Rule M or 

SARSA compete against each other at the individual level to accumulate wealth (sugar) at the 

Collective level. 

4.2. Emergence 

A pairwise comparison of the four agent types creates sixteen sets of results over time for each of 

mean wealth, mean vision, mean metabolism, cumulative combat deaths, cumulative starvation deaths, 

mean age, and maximum age (as shown on the right of Figure 1). It is from these outcomes a 

determination can be made for how well the different learning agents fared against each other and 

against the Rule M agents. The emergence of unexpected results, such as decrease of vision distance 

or lack of combat deaths, is also found in these outcomes. 

4.3. Adaptation 

All agent types use the same method to assess their current state (see Section 7.5). They examine the 

Grid Cells horizontally and vertically that are directly in line with the agent itself (i.e., they use a von 

Neumann neighborhood) and counts the number of other agents, friendly and enemy within their vision 

range (Section 4.7). If an agent sees no other agents, it places them in a No Contact state. If there are 

the same or less friendly agents than enemy agents within their vison, they are in a Weak state. Lastly, 

if more friendly agents than enemy agents are seen, they are in a Strong state. Decision-making is the 

key difference between the actions (e.g. Attack vs. Stay, see Section 7.6 for more actions) of the four 

types of agents. The Rule M agents adopt an Attack action when in a Strong state. Otherwise, they 

take a Jump action, moving to a location with the highest sugar within its vision range. The EC agent 

does the same but has an additional Retreat action when in a Weak state that moves them back to the 

spawn area of their Collective (see Section 4.10). In addition, the EC agents modify the initialization 

values for metabolism and vision when replacing dead agents, copying values from high wealth agents. 

Vision effects their ability to see sugar, plus friendly and enemy agents. Metabolism affects their ability 

to survive without new sugar sources. Both of these agents use explicit knowledge provided by the 

modeler (see Sections 7.1 and 7.2). 

Q-Learning and SARSA agents make their decisions based on their Q-Value matrix that hold 

probabilities for four actions given one of three states. The actions are the same as the previous two 

agents with a fourth action to Stay in place. This 3x4 matrix is initially empty, but as agents take actions 

and observe results it is updated with new probability values. At first, the agents have a higher 

probability of exploring instead of using their best, past decisions. As the agents grow older, they focus 
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on their past knowledge. The experience gained by each agent is tacit knowledge (see Sections 7.3 

and 7.4). 

4.4. Objectives 

The primary objective measure of this model is the accumulation of wealth in the form of sugar. Agents 

of all types accumulate sugar individually that is measured as mean wealth over time at the Collective 

level. Agents gather wealth when they move to a Grid Cell that contains sugar. They expend sugar 

based on their individual metabolism. 

4.5. Learning 

Three of the four agent types (i.e., EC, Q-Learning, and SARSA) use learning to change their decision 

making over time. The Rule M agent does not learn (however, it does adapt - see Section 4.2) and 

simply follows a set of rules (i.e., explicit knowledge) provided by the modeler. The EC agents learn as 

a Collective using evolutionary computing (Holland, 1975). As EC agents die and are replaced, their 

metabolism and vision attribute values are initialized based on those agents in their Collective that have 

the most wealth rather than a random value. The mean vision and metabolism attributes for the 

Collective converge to a local maximum that represents a best choice for wealth accumulation. 

Reinforcement learning (Sutton and Barto, 2018) drives the remaining two agent types. Q-Learning and 

SARSA agent types learn individually by accumulating tacit knowledge, storing their experience in a Q-

Value matrix. Initially, these agents explore their world randomly while updating their experience. As 

they age, they increasingly use their experience to make decisions until doing so 95% of the time. In a 

sense, as the agents get older, they explore less and follow their tacit knowledge more. The difference 

between these two agent types is how they update their experience. Q-Learning agents make off-policy 

updates. This allows them to follow their existing policy in their Q-Value matrix, and then update their 

experience by looking outside the policy. SARSA agents make on-policy updates. They follow and 

update their experience using their existing policy.  

4.6. Prediction 

Rule M agents make no predictions of the future, simply living for the moment. The EC Collective 

implicitly predicts that wealthy agents are better role models and shift their vision and metabolism 

attribute values toward those agents. One of the fundamental concepts of reinforcement learning used 

by Q-Learning and SARSA agents is to explicitly calculate future values for all state-action pairs and to 

update their experience to maximize the best outcome. 

4.7. Sensing 

Common to all agent types is self-localization to the Grid Cell they occupy. From this location, agents 

can examine other Grid Cells above, below, left, and right, up (i.e., von Neumann neighborhood) to a 

limit held by their vision attribute. In each of these cells, an agent can sense the amount of sugar, 

friendly agents, and enemy agents with absolute accuracy. The vision attribute values are based on the 

original Sugarscape model of Epstein and Axtell (1996). 

4.8. Interaction 

There is one type of direct interaction available to Rule M and EC agent types that occur when an agent 

decides to Attack an enemy agent. This combat interaction occurs between agents in different 

Collectives. The decision to Attack is an indirect influence based on observations made of friendly and 
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enemy agents within sensing range (Section 4.7). If an agent senses more friendly agents than enemy 

agents it will Attack. Another indirect influence occurs when no enemy agents are sensed by a Rule M 

or EC type agent. These agents will Jump to the nearest Grid Cell within their sensing range that has 

the most sugar and eat the sugar. The act of eating the sugar has an indirect influence on future agent 

decisions. EC type agents have an additional indirect interaction if they sense the same or more enemy 

agents than friendly agents. The agents will Retreat to their Collective's spawn area (Section 4.10). 

Q-Learning and SARSA type agents have all actions available to them as seen in Table 2 and include 

an additional action, doing nothing, which may indirectly influence other agents. The Q-Learning and 

SARSA agents' decision to interact is based on the state they are in and the tacit knowledge stored in 

the Q-Value matrix. Table 2 summarizes the possible actions for the various agent types, given a state, 

that each of the agent types can take. Note that Rule M cannot discern the difference between Weak 

and No Contact states and will Jump in either state. 

Table 2 - Possible actions given a state by agent type. RM = Rule M, EC = Evolutionary Computing, 

QL = Q-Learning, and S = SARSA. The Attack is the only direct interaction. 

 Action 

None Jump Retreat Attack 

S
ta

te
 No Contact QL, S RM, EC, QL, S QL, S QL, S 

Weak QL, S RM, QL, S EC, QL, S QL, S 

Strong QL, S QL, S QL, S RM, EC, QL, S 

 

4.9. Stochasticity 

Stochasticity is used to initialize the attributes of newly created agents, select the activation order of 

agents, select initial and re-spawn Grid Cells, evolve EC agents, and make Q-Learning and SARSA 

agent action decisions. Uniform distributions are used for all random value selections. 

4.10. Collectives 

Within the model, the two Collectives are labeled Group A and Group B. Either holds exactly one agent 

type that begin in spawn areas of the southwest most 21x21 Grid Cells and northeast most 21x21 Grid 

Cells respectively. The Collectives consider each other's agents to be enemies for combat actions. 

4.11. Observation 

From an observation perspective, the Grid Cells provide a view of all agent locations and provide an 

opportunity for anecdotal observation of interactions. We use plots as shown in Figure 1 (right side) to 

capture mean wealth, mean vision, mean metabolism, cumulative combat deaths, cumulative starvation 

deaths, mean age, and maximum age for each Collective and the data generated can be collected 

using NetLogo’s BehaviorSpace tool for later analysis. 

5. INITIALIZATION 

During initialization, an equal number of agents are created for each Collective as determined by user 

input. Their common state attribute values are drawn from a random uniform distribution for sugar, 

metabolism, and vision or specific values for age, state, action, epsilon, and the Q-Value matrix. Unique 

to each Collective (Section 4.10) is the agent's color, name, and a stochastically assigned location 
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restricting an agent to be with others of their Collective. The Grid Cell psugar attributes are assigned 

specific values that are drawn from the provided file "symmetric-sugar-map.txt" for the 50x50 grid. 

These values are symmetrical across the major axis drawn from the northwest to southeast corners.2 

Tick is set to zero. 

6. INPUT DATA 

The model does not use input data to represent time-varying processes. 

7. SUBMODELS 

There are four sub-models representing each of the agent types (i.e., Rule M, Q-Learning, SARSA, and 

EC agents) and the actions that can be taken. Figure 2 shows how these sub-models are positioned in 

the process flow. The Sugarscape model, "Sugarscape 2 Constant Growback" (LI and Wilensky, 2009), 

included in the NetLogo models library was the foundation for the model development. An iterative and 

incremental programming methodology was used to add new code into the existing model while 

removing code that was not needed and modifying existing code to support the changes.  

7.1. Rule M 

Rule M type agents use explicit knowledge in the form of a priori rules imposed by the modeler to 

determine actions (Section 7.6) given its state (Section 7.5). These agents can be in one of two states: 

1) Strong or 2) No Contact (This agent type has no rule for a Weak state to more closely match combat 

in the original Epstein and Axtell (1996) description.). If its state is Strong, it Attacks following the 

process described in Section 7.6.1. Otherwise, it Jumps following what is discussed in Section 7.6.3. 

These three steps are listed below: 

1. Determine the current state (Section 7.5). 

2. If the state is Strong, take action Attack (Section 7.6.1). 

3. Otherwise, take action Jump (Section 7.6.3). 

7.2. Evolutionary Computing (EC) 

EC type agents use explicit knowledge in the form of a priori rules imposed by the modeler to determine 

actions (Section 7.6) given its state (Section 7.5). These agents can be in one of three states: 1) 

Strong, 2) Weak, or 3) No Contact. If its state is Strong, it Attacks following the process in Section 

7.6.1. If Weak, it Retreats uses the process found in Section 7.6.2. Otherwise, it Jumps following 

Section 7.6.3. These four steps are listed below: 

1. Determine the current state (Section 7.5). 

2. If the state is Strong, take action Attack (Section 7.6.1). 

3. If the state is Weak, take action Retreat (Section 7.6.2). 

4. Otherwise, take action Jump (Section 7.6.3). 

Once all agents in the two Collectives (see Section 4.10) have been selected and followed the above 

steps, EC replacements for dead agents are first initialized then their vision and metabolism attribute 

values are replaced with new values taken from the two EC agents with the highest sugar. A random 

uniform distribution is used to select one of each of the two values for these attributes. 

                                                                 
2
 The original sugar topology in Epstein and Axtell (1996) is not symmetrical as can be seen in Figure II-1 using a 

visual diagnostic (Epstein and Axtell, 1996, p. 22). 
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7.3. Q-Learning 

Q-Learning agents use reinforcement learning  (Sutton, 1988; Sutton and Barto, 2018) to gather tacit 

knowledge over time and store their experience in a 3x4 Q-Value matrix. The matrix is an intersection 

of three states (Section 7.5) and four actions (Section 7.6). This agent type makes its decision, takes 

the appropriate action, and updates its experience using the following procedure: 

1. Determine the current state (Section 7.5). 

2. Calculate the probability (Equation 1) of exploring alternate actions in lieu of the best action. 

This probability ϵ is based on the age of the agent so younger agents have a higher probability 

than older agents do. There is a hard limit of 5% for exploration that an agent will not go below. 

This calculation occurs in every tick so t is constantly increasing monotonically. 

 
   

 

    
      
    

 (1) 

 where t is the age of the agent in ticks  
 

3. Create a four-value probability vector (one for each action) with each holding the value ϵ divided 

by four. The sum of the probability vector is less than one. Examine the Q-Value matrix for the 

current state (from Step 1) and find the action with the highest value. If there is more than one 

action with the same highest value, one is selected using a random uniform distribution. The 

corresponding action in the probability vector is changed to Anew (Equation 2) using the best 

action value from the Q-Value matrix. The sum of the probability vector is now one.  

                   (2) 

 where ϵ is from Equation 1 and QVmax is the best Q-Value matrix value for the state  
 

4. Use the probability vector to select an action. The previous step will slightly increment the best 

action to a higher probability as the agent grows older. 

5. Take the action using the appropriate sub-model from Section 7.6. 

6. Determine the Reward the agent receives for its action given its state. The Reward table (Table 

3) is the means by which the modeler influences the reinforcement learning agent's actions. 

They are established a priori as part of the model design. Here it is based on the amount of 

sugar in the Grid Cell (Patch Sugar) and the maximum amount of sugar the Grid Cell can hold 

(Max Sugar) with extra encouragements and discouragement for some actions. 

7. Determine the new state (Section 7.5) now that an action has taken place. 

8. Given the new state, find the new best action in the Q-Value matrix. 

9. Update the Q-Value matrix. 

a. Calculate the future Q-Value using the new state and new action from steps 7 and 8, the 

Reward from Step 6, and hyper-parameter γ as shown in Equation 3. 

                             (3) 

 where the hyper-parameter γ is the future discount and QVfuture is a value obtained 
from the Q-Value matrix using new state and new action 

 

b. Calculate the difference (error) between the future Q-Value (Step 9.a) and the current Q-

Value using current state and action using Equation 4. 
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                      (4) 

 where QVfuture is a value obtained from the Q-Value matrix using new state and new 
action, QVcurrent is a value obtained from the Q-Value matrix using current state and 

current action 
 

c. Set the Q-Value for the current state and action to that value plus the learning rate times 

the error from Step 9.b as shown in Equation 5. 

                          (5) 

 where QVcurrent is a value obtained from the Q-Value matrix using current state and 
current action, the hyper-parameter λ is the learning rate, and E is the error from the 

previous step 
 

 

10. Finally, the agent's state is set to the new state. 

Table 3 - State-Action Rewards 

Rewards 
Action 

Stay Jump Retreat Attack 

S
ta

te
 

No Contact Patch Sugar Patch Sugar -100 -100 

Weak Position 
Patch Sugar  
- Max Sugar 

Patch Sugar  
+ Max Sugar 

Patch Sugar  
+ Max Sugar x 10 

Patch Sugar  
- Max Sugar x 2 

Strong Position 
Patch Sugar Patch Sugar  

+ Max Sugar 
Patch Sugar - 
Max Sugar x 2 

Patch Sugar  
+ Max Sugar x 10 

 

7.4. SARSA (State-Action-Reward-State-Action) 

SARSA agents use reinforcement learning (Sutton, 1988; Sutton and Barto, 2018) to gather tacit 

knowledge over time and store their experience in a 3x4 Q-Value matrix. SARSA is an extension of Q-

Learning with an additional State-Action that uses on-policy decision making instead of off-policy. The 

matrix is an intersection of the three states (Section 7.5) and four actions (Section 7.6). This agent type 

makes its decision, takes the appropriate action, and updates its experience using the following 

procedure: 

1. Determine the current state (Section 7.5). 

2. Calculate the probability (Equation 1) of exploring alternate actions in lieu of the best action. 

This probability ϵ is based on the age of the agent so younger agents have a higher probability 

than older agents do. There is a hard limit of 5% for exploration that an agent will not go below. 

This calculation occurs in every tick so t in Equation 1 is constantly increasing monotonically. 

3. If this agent is aged zero (i.e., brand new) then: 

a. Create a four-value probability vector (one for each action) with each holding the value ϵ 

divided by four. The sum of the probability vector is less than one. Examine the Q-Value 

matrix for the current state (from Step 1) and find the action with the highest value. If 

there is more than one action with the same highest value, one is selected using a 

random uniform distribution. The corresponding action in the probability vector is 

changed to Anew (Equation 2) using the best action value from the Q-Value matrix. The 

sum of the probability vector is now one.  

b. Use the probability vector to select an action. The previous step will slightly increment 

the best action to a higher probability as the agent grows older. 

4. Take the action using the appropriate sub-model from Section 7.6. 
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5. Determine the Reward the agent receives for its action given its state. The Reward table (Table 

3) is the means by which the modeler influences the reinforcement learning agent's actions. 

They are established a priori as part of the model design. Here it is based on the amount of 

sugar in the Grid Cell (Patch Sugar) and the maximum amount of sugar the Grid Cell can hold 

(Max Sugar) with extra encouragements and discouragement for some actions. 

6. Determine the new state (Section 7.5) now that an action has taken place. 

7. Create a four-value probability new state vector (one for each action) with each holding the 

value ϵ divided by four. The sum of the probability vector is less than one. Examine the Q-Value 

matrix for the new state (from Step 6) and find the action with the highest value. If there is more 

than one action with the same highest value, one is selected using a random uniform 

distribution. The corresponding action in the probability new state vector is changed to Anew 

(Equation 2) using the best action value from the Q-Value matrix. The sum of the probability 

vector is now one.  

8. Use the probability new state vector to select a new action. The previous step will slightly 

increment the best action to a higher probability as the agent grows older. 

9. Update the Q-Value matrix. 

a. Calculate the future Q-Value using the new state and new action from steps 6 and 8, the 

Reward from Step 5, and hyper-parameter γ as shown in Equation 3. 

b. Calculate the difference (error) between the future Q-Value (Step 9a) and the current 

Q-Value using current state and action using Equation 4. 

c. Set the Q-Value for the current state and action to that value plus the learning rate times 

the error from Step 9b as shown in Equation 5. 

10. The agent's state is set to the new state. 

11. The agent's action is set to the new action. 

7.5. States 

The state an agent is in either determines (for Rule M and EC) or suggests (for Q-Learning and 

SARSA) possible actions that can be taken. There are three possible states: Strong, when an agent 

senses more friendly agents than enemy; Weak, when an agent senses the same or more enemy 

agents than friendly; and, No Contact, when an agent senses no enemy agents. 

7.6. Actions 

All agents can take an action based on their current state. Table 2 provides a breakdown of these 

actions. 

7.6.1.  Action: Attack 

Once the decision to Attack is made, an agent senses (Section 4.7) the enemy agents within their 

vision range and selects the closest one occupying a Grid Cell with the most sugar. If there is more 

than one such Grid Cell, the agent selects one using a random uniform distribution. The agent then 

moves to the selected Grid Cell, removes (kills) the enemy agent, and receives a sugar bonus. 

7.6.2.  Action: Retreat 

An agent executing a Retreat selects an empty Grid Cell in its Collective's (Section 4.10) spawn area 

and moves to that location. If there are multiple available locations, the agent selects one using a 

random uniform distribution. 
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7.6.3.  Action: Jump 

Based on the original Epstein and Axtell (1996) movement for Rule M, an agent selects the closest 

unoccupied Grid Cell with the most sugar and moves to that location. If there are multiple available 

locations, the agent selects one using a random uniform distribution. 

7.6.4.  Action: Stay 

The agent remains in its current Grid Cell and eats any sugar that has re-grown at its location. 
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