
1

Overview, Design concepts, and Details for the model Creating Intelligent
Agents

Dale K. Brearcliffe1[0000-0003-0142-000X] and Andrew Crooks1,2[0000-0002-5034-6654]

1 George Mason University, Fairfax VA 22030, USA
2 University at Buffalo, Buffalo NY 14261

dbrearcl@gmu.edu & atcrooks@buffalo.edu

Within this document, we provide a description of the Agent-Base Model (ABM) "Creating Intelligent

Agents" which is based on the updated Overview, Design concepts, and Details (ODD) protocol

developed by Grimm et al. (2020). The objective of this ODD is to provide the reader a human

comprehensible description of the workflow, code, and intent behind the design of the ABM. The ABM

was designed using NetLogo (Wilensky, 1999, Version 6.1) and provides the user with a Graphical

User Interface (GUI) as presented in Figure 1. The model itself can be found at: https://tinyurl.com/ML-

Agents.

Figure 1 - Graphical User Interface of the “Creating Intelligent Agents” model. From left to right: input

parameters, agents within their artificial world, and aggregate model outputs.

1. PURPOSE AND PATTERNS

The primary purpose of this model is to demonstrate the methods by which intelligent agents (i.e.,

agents which utilize machine learning techniques) can be incorporated into an ABM. It does so by

contrasting agents using a priori rules with agents that evolve physical characteristics over time and

agents that learn successful and unsuccessful decisions over time. The agents operate in an extension

of the Sugarscape (Epstein and Axtell, 1996) ABM that has been used to explore migration, trade,

wealth inequality, disease processes, sex, culture, and conflict. Conflict between two groups, where

friends are in the same group and enemies are in the other, is the focus of the model as the individual

agents seek to accumulate wealth in the form of sugar. The Sugarscape model, "Sugarscape 2

Constant Growback" (LI and Wilensky, 2009), included in the NetLogo model library was the foundation

for this model's development. We chose Sugarscape (Epstein and Axtell, 1996) as it is well known and

2

understood in the agent-based modeling community and therefore would allow us to demonstrate how

different learning techniques can be incorporated into an ABM without having to describe in detail the

model itself. The secondary purpose of this model is to judge whether resources (software development

time, wall clock time, and analytic time) expended on using intelligent agents is worth the effort. The

final purpose of this model is to determine which of the four types of agents (i.e., Rule M, Q-Learning,

SARSA and EC agents) are more successful, where success is measured by accumulated wealth (i.e.,

sugar).

Pattern 1: It is only the third purpose that provides an observable outcome from the model. The ability

of the agents with a priori assigned rules (i.e., Rule M) is placed in conflict with the three types of

learning agents (i.e., Q-Learning, SARSA, and EC). These types of learning agents are also placed in

conflict with each other. From these conflicts, a variety of meta-patterns can be measured and

compared. This involves a pairwise comparison of the four agent types for outcomes of mean wealth,

mean vision, mean metabolism, cumulative combat deaths, cumulative starvation deaths, mean age,

and maximum age (see Figure 1 and Section 7 for more details).

2. ENTITIES, STATE VARIABLES, AND SCALES

2.1. Entities

There are seven types of entities included in this model. Four are agents, one is a collective, one is a

grid cell, and one is environmental (see Section 5 for entity initialization details).

1) Standard (Rule M)1 agents have hard coded rules imposed on them a priori to the model

execution. The rule set does not change during model execution. Replacement agents are

assigned initial attribute values using the same process used by agents at the beginning of the

model (Section 7.1).

2) Evolutionary Computing (EC) agents also have hard coded rules imposed on them a priori to

the model execution. However, some of the attributes of replacement agents are based upon

the most successful agents of a collective rather than random values (which will be discussed in

more detail in Section 7.2).

3) Q-Learning agents have no a priori assigned rules. Instead, they have a decision matrix

showing the actions they can take, given their state (see Section 7.5). Initially the matrix is

blank, and agents make random decisions for which they receive a reward from an a priori

provided reward table. Over time the decision table changes based on the best decisions and

random explorations of the agent. These agents may ignore the decision table for future actions

(within reinforcement learning this is known off-policy decision-making, see Section 7.3).

4) State-Action-Reward-State-Action (SARSA) Learning agents are an extension of Q-Learning

agents. They are much the same, except their decisions use the same policy that generates the

current action to generate the next action (within reinforcement learning this is known as on-

policy decision-making, see Section 7.4).

5) Breed (Collective) are groups of agents of the same agent type (Section 4.10).

6) Grid Cells (Patches - A NetLogo term) are spatial locations representing equal portions of a two-

dimensional world. See Section 5 for initialization details.

7) Tick (Environmental) is a discrete interval (Stevens, 1946) unit of equal time.

1
 Rule M refers to the designation of this type of agent used by Epstein and Axtell (1996).

3

2.2. State Variables and Scale

There are two Collectives (Breeds - A NetLogo term) active in the model during initialization and the

execution of the model; these are labeled "Group A" and "Group B." Each collective holds only one type

of agent (i.e., Rule M, Q-Learning which is chosen by the modeler at model initialization) and both

Collectives can have the same entity type (e.g., Q-Learning and Q-Learning). All agents (i.e., Rule M,

EC, Q-Learning, and SARSA), are each initialized (Section 5) with different attribute values. The

attributes common amongst the agents are sugar, metabolism, vision, and age. Q-Learning and

SARSA agents have additional attributes that hold their current state and action (which are discussed

more in Sections 7.3 and 7.4 respectively). The Q-Learning and SARSA learning agents also have a Q-

Value matrix that represents their accumulated tacit knowledge of past decisions. Grid Cells are

initialized (see Section 5) with sugar values (psugar) that change during model execution. The sugar

values represent two piles, one in the northeast corner and the other in the southwest corner of a

non-toroidal grid sized fifty-by-fifty cells. Finally, Ticks are temporal intervals of equal value that

increase monotonically during model execution. Each Tick has no equivalency to wall clock time. The

values these state variables can assume are listed in Table 1.

Table 1 - Model State Variables

Attribute Name Represents Type Value Range

action The current action of the agent. Integer [0,3]

age The number of ticks an agent has existed. Integer [0,20000]

breed Which of the two groups an agent belongs to. Ordinal {Group A, Group B}

metabolism The amount of sugar that each agent loses
(consumes) each tick.

Integer [1,4]

psugar The amount of sugar in a Grid Cell. Decimal [0,4] step 0.1

q-values The matrix of Q-Values. (state versus action) Matrix [3x4] of Float [0,+∞)

state The current state of the agent. Integer [0,2]

sugar The amount of sugar the agent has. Decimal [0.1,+∞) step 0.1

tick A unit of equal time. Integer [0,20000]

vision The distance (in cells) that an agent can see in
the horizontal and vertical directions directly in
line with the agent's cell location (von Neumann
neighborhood).

Integer [1,6]

3. PROCESS OVERVIEW AND SCHEDULING

After initialization (see Section 5), the model proceeds in equal interval (Ticks) of time. At each time

step, an agent is selected using a random uniform distribution from all agents (both Collectives) that

have yet to be selected during the current time interval. This continues until all agents have been

selected. Each of the four types of agents takes a different path in the model execution as show in

Figure 2 (and discussed in more detail in Section 7). There are only two agent types in use during any

model run so only two of these paths will be followed. The Rule M agent, as noted above (Section 2.1)

is based on the original Sugarscape model (Epstein and Axtell, 1996), attacks if it is in a Strong position

(see Section 4.3) or Jumps to a random Grid Cell if not. The EC agent is similar but will Retreat if in a

Weak position (see Section 4.3). The Q-Learning agent's decision path is more complicated. It has a

fourth available action of staying stationary, and makes its decision (i.e., Attack, Retreat, Jump, or Stay)

based on its experience of the three state types (i.e., Strong, Weak, No Contact) using an off-policy

method to select an action (see Section 2.1). The SARSA agent's path is the same as the Q-Learning

agent's with one difference, it uses an on-policy method to select an action (see Section 2.1). After all

4

agents have been selected, the execution paths of the agents converge with the replacement of agents

that have been attacked (i.e., killed). EC agents have an additional step whereby new agents are based

on mutated versions of the wealthiest agents of their Collective (see Section 4.3). The model ends

when either all agents in a Collective are dead or maximum time has been reached.

Figure 2 - Model execution flowchart.

5

4. DESIGN CONCEPTS

4.1. Basic principles

The model was developed to demonstrate the differences between traditional rule-based approaches

commonly used within agent-based modeling and learning agents and to demonstrate how learning

agents can be integrated into an agent-based model. The design of the simple agents, (i.e., Rule M),

was based on the Sugarscape (Epstein and Axtell, 1996) model. The EC agents came from both

Sugarscape (Epstein and Axtell, 1996) and Genetic Algorithms (GA) more generally, that were first

described by Holland (1975). Q-Learning and SARSA agents use Reinforcement Learning (Sutton,

1988; Sutton and Barto, 2018). These four approaches are realized at the level of individual agents and

are implemented by different sub-models (see Section 7). During a model execution, no more than two

Collectives (Section 4.10) with each having only one agent type (Section 2.1) such as Rule M or

SARSA compete against each other at the individual level to accumulate wealth (sugar) at the

Collective level.

4.2. Emergence

A pairwise comparison of the four agent types creates sixteen sets of results over time for each of

mean wealth, mean vision, mean metabolism, cumulative combat deaths, cumulative starvation deaths,

mean age, and maximum age (as shown on the right of Figure 1). It is from these outcomes a

determination can be made for how well the different learning agents fared against each other and

against the Rule M agents. The emergence of unexpected results, such as decrease of vision distance

or lack of combat deaths, is also found in these outcomes.

4.3. Adaptation

All agent types use the same method to assess their current state (see Section 7.5). They examine the

Grid Cells horizontally and vertically that are directly in line with the agent itself (i.e., they use a von

Neumann neighborhood) and counts the number of other agents, friendly and enemy within their vision

range (Section 4.7). If an agent sees no other agents, it places them in a No Contact state. If there are

the same or less friendly agents than enemy agents within their vison, they are in a Weak state. Lastly,

if more friendly agents than enemy agents are seen, they are in a Strong state. Decision-making is the

key difference between the actions (e.g. Attack vs. Stay, see Section 7.6 for more actions) of the four

types of agents. The Rule M agents adopt an Attack action when in a Strong state. Otherwise, they

take a Jump action, moving to a location with the highest sugar within its vision range. The EC agent

does the same but has an additional Retreat action when in a Weak state that moves them back to the

spawn area of their Collective (see Section 4.10). In addition, the EC agents modify the initialization

values for metabolism and vision when replacing dead agents, copying values from high wealth agents.

Vision effects their ability to see sugar, plus friendly and enemy agents. Metabolism affects their ability

to survive without new sugar sources. Both of these agents use explicit knowledge provided by the

modeler (see Sections 7.1 and 7.2).

Q-Learning and SARSA agents make their decisions based on their Q-Value matrix that hold

probabilities for four actions given one of three states. The actions are the same as the previous two

agents with a fourth action to Stay in place. This 3x4 matrix is initially empty, but as agents take actions

and observe results it is updated with new probability values. At first, the agents have a higher

probability of exploring instead of using their best, past decisions. As the agents grow older, they focus

6

on their past knowledge. The experience gained by each agent is tacit knowledge (see Sections 7.3

and 7.4).

4.4. Objectives

The primary objective measure of this model is the accumulation of wealth in the form of sugar. Agents

of all types accumulate sugar individually that is measured as mean wealth over time at the Collective

level. Agents gather wealth when they move to a Grid Cell that contains sugar. They expend sugar

based on their individual metabolism.

4.5. Learning

Three of the four agent types (i.e., EC, Q-Learning, and SARSA) use learning to change their decision

making over time. The Rule M agent does not learn (however, it does adapt - see Section 4.2) and

simply follows a set of rules (i.e., explicit knowledge) provided by the modeler. The EC agents learn as

a Collective using evolutionary computing (Holland, 1975). As EC agents die and are replaced, their

metabolism and vision attribute values are initialized based on those agents in their Collective that have

the most wealth rather than a random value. The mean vision and metabolism attributes for the

Collective converge to a local maximum that represents a best choice for wealth accumulation.

Reinforcement learning (Sutton and Barto, 2018) drives the remaining two agent types. Q-Learning and

SARSA agent types learn individually by accumulating tacit knowledge, storing their experience in a Q-

Value matrix. Initially, these agents explore their world randomly while updating their experience. As

they age, they increasingly use their experience to make decisions until doing so 95% of the time. In a

sense, as the agents get older, they explore less and follow their tacit knowledge more. The difference

between these two agent types is how they update their experience. Q-Learning agents make off-policy

updates. This allows them to follow their existing policy in their Q-Value matrix, and then update their

experience by looking outside the policy. SARSA agents make on-policy updates. They follow and

update their experience using their existing policy.

4.6. Prediction

Rule M agents make no predictions of the future, simply living for the moment. The EC Collective

implicitly predicts that wealthy agents are better role models and shift their vision and metabolism

attribute values toward those agents. One of the fundamental concepts of reinforcement learning used

by Q-Learning and SARSA agents is to explicitly calculate future values for all state-action pairs and to

update their experience to maximize the best outcome.

4.7. Sensing

Common to all agent types is self-localization to the Grid Cell they occupy. From this location, agents

can examine other Grid Cells above, below, left, and right, up (i.e., von Neumann neighborhood) to a

limit held by their vision attribute. In each of these cells, an agent can sense the amount of sugar,

friendly agents, and enemy agents with absolute accuracy. The vision attribute values are based on the

original Sugarscape model of Epstein and Axtell (1996).

4.8. Interaction

There is one type of direct interaction available to Rule M and EC agent types that occur when an agent

decides to Attack an enemy agent. This combat interaction occurs between agents in different

Collectives. The decision to Attack is an indirect influence based on observations made of friendly and

7

enemy agents within sensing range (Section 4.7). If an agent senses more friendly agents than enemy

agents it will Attack. Another indirect influence occurs when no enemy agents are sensed by a Rule M

or EC type agent. These agents will Jump to the nearest Grid Cell within their sensing range that has

the most sugar and eat the sugar. The act of eating the sugar has an indirect influence on future agent

decisions. EC type agents have an additional indirect interaction if they sense the same or more enemy

agents than friendly agents. The agents will Retreat to their Collective's spawn area (Section 4.10).

Q-Learning and SARSA type agents have all actions available to them as seen in Table 2 and include

an additional action, doing nothing, which may indirectly influence other agents. The Q-Learning and

SARSA agents' decision to interact is based on the state they are in and the tacit knowledge stored in

the Q-Value matrix. Table 2 summarizes the possible actions for the various agent types, given a state,

that each of the agent types can take. Note that Rule M cannot discern the difference between Weak

and No Contact states and will Jump in either state.

Table 2 - Possible actions given a state by agent type. RM = Rule M, EC = Evolutionary Computing,

QL = Q-Learning, and S = SARSA. The Attack is the only direct interaction.

 Action

None Jump Retreat Attack

S
ta

te
 No Contact QL, S RM, EC, QL, S QL, S QL, S

Weak QL, S RM, QL, S EC, QL, S QL, S

Strong QL, S QL, S QL, S RM, EC, QL, S

4.9. Stochasticity

Stochasticity is used to initialize the attributes of newly created agents, select the activation order of

agents, select initial and re-spawn Grid Cells, evolve EC agents, and make Q-Learning and SARSA

agent action decisions. Uniform distributions are used for all random value selections.

4.10. Collectives

Within the model, the two Collectives are labeled Group A and Group B. Either holds exactly one agent

type that begin in spawn areas of the southwest most 21x21 Grid Cells and northeast most 21x21 Grid

Cells respectively. The Collectives consider each other's agents to be enemies for combat actions.

4.11. Observation

From an observation perspective, the Grid Cells provide a view of all agent locations and provide an

opportunity for anecdotal observation of interactions. We use plots as shown in Figure 1 (right side) to

capture mean wealth, mean vision, mean metabolism, cumulative combat deaths, cumulative starvation

deaths, mean age, and maximum age for each Collective and the data generated can be collected

using NetLogo’s BehaviorSpace tool for later analysis.

5. INITIALIZATION

During initialization, an equal number of agents are created for each Collective as determined by user

input. Their common state attribute values are drawn from a random uniform distribution for sugar,

metabolism, and vision or specific values for age, state, action, epsilon, and the Q-Value matrix. Unique

to each Collective (Section 4.10) is the agent's color, name, and a stochastically assigned location

8

restricting an agent to be with others of their Collective. The Grid Cell psugar attributes are assigned

specific values that are drawn from the provided file "symmetric-sugar-map.txt" for the 50x50 grid.

These values are symmetrical across the major axis drawn from the northwest to southeast corners.2

Tick is set to zero.

6. INPUT DATA

The model does not use input data to represent time-varying processes.

7. SUBMODELS

There are four sub-models representing each of the agent types (i.e., Rule M, Q-Learning, SARSA, and

EC agents) and the actions that can be taken. Figure 2 shows how these sub-models are positioned in

the process flow. The Sugarscape model, "Sugarscape 2 Constant Growback" (LI and Wilensky, 2009),

included in the NetLogo models library was the foundation for the model development. An iterative and

incremental programming methodology was used to add new code into the existing model while

removing code that was not needed and modifying existing code to support the changes.

7.1. Rule M

Rule M type agents use explicit knowledge in the form of a priori rules imposed by the modeler to

determine actions (Section 7.6) given its state (Section 7.5). These agents can be in one of two states:

1) Strong or 2) No Contact (This agent type has no rule for a Weak state to more closely match combat

in the original Epstein and Axtell (1996) description.). If its state is Strong, it Attacks following the

process described in Section 7.6.1. Otherwise, it Jumps following what is discussed in Section 7.6.3.

These three steps are listed below:

1. Determine the current state (Section 7.5).

2. If the state is Strong, take action Attack (Section 7.6.1).

3. Otherwise, take action Jump (Section 7.6.3).

7.2. Evolutionary Computing (EC)

EC type agents use explicit knowledge in the form of a priori rules imposed by the modeler to determine

actions (Section 7.6) given its state (Section 7.5). These agents can be in one of three states: 1)

Strong, 2) Weak, or 3) No Contact. If its state is Strong, it Attacks following the process in Section

7.6.1. If Weak, it Retreats uses the process found in Section 7.6.2. Otherwise, it Jumps following

Section 7.6.3. These four steps are listed below:

1. Determine the current state (Section 7.5).

2. If the state is Strong, take action Attack (Section 7.6.1).

3. If the state is Weak, take action Retreat (Section 7.6.2).

4. Otherwise, take action Jump (Section 7.6.3).

Once all agents in the two Collectives (see Section 4.10) have been selected and followed the above

steps, EC replacements for dead agents are first initialized then their vision and metabolism attribute

values are replaced with new values taken from the two EC agents with the highest sugar. A random

uniform distribution is used to select one of each of the two values for these attributes.

2
 The original sugar topology in Epstein and Axtell (1996) is not symmetrical as can be seen in Figure II-1 using a

visual diagnostic (Epstein and Axtell, 1996, p. 22).

9

7.3. Q-Learning

Q-Learning agents use reinforcement learning (Sutton, 1988; Sutton and Barto, 2018) to gather tacit

knowledge over time and store their experience in a 3x4 Q-Value matrix. The matrix is an intersection

of three states (Section 7.5) and four actions (Section 7.6). This agent type makes its decision, takes

the appropriate action, and updates its experience using the following procedure:

1. Determine the current state (Section 7.5).

2. Calculate the probability (Equation 1) of exploring alternate actions in lieu of the best action.

This probability ϵ is based on the age of the agent so younger agents have a higher probability

than older agents do. There is a hard limit of 5% for exploration that an agent will not go below.

This calculation occurs in every tick so t is constantly increasing monotonically.

 (1)

 where t is the age of the agent in ticks

3. Create a four-value probability vector (one for each action) with each holding the value ϵ divided

by four. The sum of the probability vector is less than one. Examine the Q-Value matrix for the

current state (from Step 1) and find the action with the highest value. If there is more than one

action with the same highest value, one is selected using a random uniform distribution. The

corresponding action in the probability vector is changed to Anew (Equation 2) using the best

action value from the Q-Value matrix. The sum of the probability vector is now one.

 (2)

 where ϵ is from Equation 1 and QVmax is the best Q-Value matrix value for the state

4. Use the probability vector to select an action. The previous step will slightly increment the best

action to a higher probability as the agent grows older.

5. Take the action using the appropriate sub-model from Section 7.6.

6. Determine the Reward the agent receives for its action given its state. The Reward table (Table

3) is the means by which the modeler influences the reinforcement learning agent's actions.

They are established a priori as part of the model design. Here it is based on the amount of

sugar in the Grid Cell (Patch Sugar) and the maximum amount of sugar the Grid Cell can hold

(Max Sugar) with extra encouragements and discouragement for some actions.

7. Determine the new state (Section 7.5) now that an action has taken place.

8. Given the new state, find the new best action in the Q-Value matrix.

9. Update the Q-Value matrix.

a. Calculate the future Q-Value using the new state and new action from steps 7 and 8, the

Reward from Step 6, and hyper-parameter γ as shown in Equation 3.

 (3)

 where the hyper-parameter γ is the future discount and QVfuture is a value obtained
from the Q-Value matrix using new state and new action

b. Calculate the difference (error) between the future Q-Value (Step 9.a) and the current Q-

Value using current state and action using Equation 4.

10

 (4)

 where QVfuture is a value obtained from the Q-Value matrix using new state and new
action, QVcurrent is a value obtained from the Q-Value matrix using current state and

current action

c. Set the Q-Value for the current state and action to that value plus the learning rate times

the error from Step 9.b as shown in Equation 5.

 (5)

 where QVcurrent is a value obtained from the Q-Value matrix using current state and
current action, the hyper-parameter λ is the learning rate, and E is the error from the

previous step

10. Finally, the agent's state is set to the new state.

Table 3 - State-Action Rewards

Rewards
Action

Stay Jump Retreat Attack

S
ta

te

No Contact Patch Sugar Patch Sugar -100 -100

Weak Position
Patch Sugar
- Max Sugar

Patch Sugar
+ Max Sugar

Patch Sugar
+ Max Sugar x 10

Patch Sugar
- Max Sugar x 2

Strong Position
Patch Sugar Patch Sugar

+ Max Sugar
Patch Sugar -
Max Sugar x 2

Patch Sugar
+ Max Sugar x 10

7.4. SARSA (State-Action-Reward-State-Action)

SARSA agents use reinforcement learning (Sutton, 1988; Sutton and Barto, 2018) to gather tacit

knowledge over time and store their experience in a 3x4 Q-Value matrix. SARSA is an extension of Q-

Learning with an additional State-Action that uses on-policy decision making instead of off-policy. The

matrix is an intersection of the three states (Section 7.5) and four actions (Section 7.6). This agent type

makes its decision, takes the appropriate action, and updates its experience using the following

procedure:

1. Determine the current state (Section 7.5).

2. Calculate the probability (Equation 1) of exploring alternate actions in lieu of the best action.

This probability ϵ is based on the age of the agent so younger agents have a higher probability

than older agents do. There is a hard limit of 5% for exploration that an agent will not go below.

This calculation occurs in every tick so t in Equation 1 is constantly increasing monotonically.

3. If this agent is aged zero (i.e., brand new) then:

a. Create a four-value probability vector (one for each action) with each holding the value ϵ

divided by four. The sum of the probability vector is less than one. Examine the Q-Value

matrix for the current state (from Step 1) and find the action with the highest value. If

there is more than one action with the same highest value, one is selected using a

random uniform distribution. The corresponding action in the probability vector is

changed to Anew (Equation 2) using the best action value from the Q-Value matrix. The

sum of the probability vector is now one.

b. Use the probability vector to select an action. The previous step will slightly increment

the best action to a higher probability as the agent grows older.

4. Take the action using the appropriate sub-model from Section 7.6.

11

5. Determine the Reward the agent receives for its action given its state. The Reward table (Table

3) is the means by which the modeler influences the reinforcement learning agent's actions.

They are established a priori as part of the model design. Here it is based on the amount of

sugar in the Grid Cell (Patch Sugar) and the maximum amount of sugar the Grid Cell can hold

(Max Sugar) with extra encouragements and discouragement for some actions.

6. Determine the new state (Section 7.5) now that an action has taken place.

7. Create a four-value probability new state vector (one for each action) with each holding the

value ϵ divided by four. The sum of the probability vector is less than one. Examine the Q-Value

matrix for the new state (from Step 6) and find the action with the highest value. If there is more

than one action with the same highest value, one is selected using a random uniform

distribution. The corresponding action in the probability new state vector is changed to Anew

(Equation 2) using the best action value from the Q-Value matrix. The sum of the probability

vector is now one.

8. Use the probability new state vector to select a new action. The previous step will slightly

increment the best action to a higher probability as the agent grows older.

9. Update the Q-Value matrix.

a. Calculate the future Q-Value using the new state and new action from steps 6 and 8, the

Reward from Step 5, and hyper-parameter γ as shown in Equation 3.

b. Calculate the difference (error) between the future Q-Value (Step 9a) and the current

Q-Value using current state and action using Equation 4.

c. Set the Q-Value for the current state and action to that value plus the learning rate times

the error from Step 9b as shown in Equation 5.

10. The agent's state is set to the new state.

11. The agent's action is set to the new action.

7.5. States

The state an agent is in either determines (for Rule M and EC) or suggests (for Q-Learning and

SARSA) possible actions that can be taken. There are three possible states: Strong, when an agent

senses more friendly agents than enemy; Weak, when an agent senses the same or more enemy

agents than friendly; and, No Contact, when an agent senses no enemy agents.

7.6. Actions

All agents can take an action based on their current state. Table 2 provides a breakdown of these

actions.

7.6.1. Action: Attack

Once the decision to Attack is made, an agent senses (Section 4.7) the enemy agents within their

vision range and selects the closest one occupying a Grid Cell with the most sugar. If there is more

than one such Grid Cell, the agent selects one using a random uniform distribution. The agent then

moves to the selected Grid Cell, removes (kills) the enemy agent, and receives a sugar bonus.

7.6.2. Action: Retreat

An agent executing a Retreat selects an empty Grid Cell in its Collective's (Section 4.10) spawn area

and moves to that location. If there are multiple available locations, the agent selects one using a

random uniform distribution.

12

7.6.3. Action: Jump

Based on the original Epstein and Axtell (1996) movement for Rule M, an agent selects the closest

unoccupied Grid Cell with the most sugar and moves to that location. If there are multiple available

locations, the agent selects one using a random uniform distribution.

7.6.4. Action: Stay

The agent remains in its current Grid Cell and eats any sugar that has re-grown at its location.

REFERENCES

Epstein, J. M., and Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up.

Washington, DC, USA: The Brookings Institute.

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., . . .

Radch. (2020). The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second

Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies and Social

Simulation, 23(2): 7. Available from: http://jasss.soc.surrey.ac.uk/23/2/7.html

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan, USA: The

University of Michigan Press.

LI, J., and Wilensky, U. (2009). NetLogo Sugarscape 2 Constant Growback model. Evanston, IL, USA:

Center for Connected Learning and Computer-Based Modeling, Northwestern University.

Stevens, S. S. (1946). On the Theory of Scales of Measurement. Science, 103(2684): 677 - 680.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine Learning,

3(1): 9-44.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction (Second ed.).

Cambridge, Massachusetts, USA: The MIT Press.

Wilensky, U. (1999). NetLogo. Evanston: Center for Connected Learning and Computer-Based

Modeling, Northwestern University.

http://jasss.soc.surrey.ac.uk/23/2/7.html

