
 

SAFARI: Simulating Agroforestry Adoption in Rural Indonesia 

The description of the agent-based model (ABM) follows the ODD (Overview, Design 

concepts, Details) protocol (Grimm et al. 2006; 2010; 2020). The model was implemented using 

NetLogo 6.1.1 (Wilensky, 1999). 

 

Purpose 

The Simulating Agroforestry Adoption in Rural Indonesia (SAFARI) model aims at exploring 

the adoption of illipe rubber agroforestry systems by farming households in the case study 

region in rural Indonesia. Thereby, the ABM simulates the interdependencies of agroforestry 

systems and local livelihoods, income, land use, biodiversity, and carbon sequestration. The 

model contrasts development paths without agroforestry (business as usual (BAU) scenario), 

corresponding to a scenario where the government promotes rubber monoculture, with the 

introduction of illipe rubber agroforestry systems (IRA scenario) as an alternative. It aims to 

support policy-makers to assess the potential of IRA over larger temporal and spatial scales.# 

 

State variables and scales 

The SAFARI model comprises two agent types: farming households and landscape patches. 

The farming households are the primary decision-making units in the model. They are 

characterized by state variables indicating their location, household size and resulting energy 

requirement, labor force, and further variables related to their agricultural activities as displayed 

in table 1. Livelihood indicators show whether the households engaged in rice or rubber 

farming, agroforestry cultivation, and illipe processing. The variable food-insecure indicates 

whether a household has failed to meet its minimal energy requirement. Income indicates 

household’s wealth. Decision making follows a bounded rationality approach including a 

satisficing heuristic based on if-then-else statements.  

 

 

  



Variable Description 

HHID Identifier of household 

Initial-laborforce Initial labor force, based on household size 

Available-laborforce Available labor force after livelihood decision, considers labor 

input for livelihoods chosen 

Farmsize Total farm size 

NumberPlots Number of plots  

My-plots Set of plots claimed by household 

Plots_cultivated Plots cultivated by household 

Fallow_plots Fallow household plots 

Plots_rice Number of plots with rice 

Plots_rubber Number of plots with rubber monoculture 

Plots_AF Number of plots with agroforestry 

RiceFarmer 1 if household cultivates rice, 0 otherwise 

RubberFarmer 1 if household cultivates rubber, 0 otherwise 

IllipeFarmer 1 if household cultivates illipe, 0 otherwise 

Illipeprocessor 1 if household processes illipe nuts, 0 otherwise 

Illipeharvest Illipe nuts harvested (in kg) 

iEnergyRequirement Auxiliary variable to calculate initial energy requirement of 

household 

EnergyRequirement Energy requirement of household 

EnergyConsumption Expected energy consumption resulting from agriculture 

cultivated in previous periods and current period 

RiceConsumption Expected energy consumption from rice 

RubberIncome Expected income from rubber monoculture 

IllipeAFIncome Expected income from illipe nuts 

RubberAFIncome Expected income from rubber in agroforestry systems 

AFincome Expected total income from agroforestry 

IllipeIncomeProcessed Expected income from illipe nuts processed 



aEnergyConsumption Actual total energy consumption (total) 

aRiceConsumption Actual energy consumption from rice 

aRubberIncome Actual income from rubber monoculture 

aIllipeAFIncome Actual income from illipe  

aRubberAFIncome Actual income from rubber in agroforestry systems 

aAFIncome Actual total income from agroforestry 

aIllipeIncomeProcessed Actual income from processed illipe 

Income Total income in Mio IDR 

Food-insecure 1 if household did not meet energy requirements, 0 otherwise 

Deficit Caloric deficit 

Table 1: Farmer variables. 

Landscape patches, the other agent type, represent the spatial environment of the model. They 

describe the land use and resulting vegetation cover as table 2 describes. Based on patch class, 

vegetation, fallow age, and the resulting fertility are derived. Fertility is used as an input to 

calculate yields. Associated to the specific uses, patch variables indicate carbon sequestration 

and biodiversity indicators, namely tree Fisher’s alpha, basal area, tree species richness, and 

tree density as well as bird richness. The agents are parameterized according to survey and GIS 

data as well as ecological indicators.  

One patch agent represents an area of 100x100 meters resulting in a total area of about 28x44km 

covered. 

Variable Description 

Owner Identification of household claiming ownership 

Plotid Plot identifier according to survey 

Class Land use class (natural forest, secondary forest, old fallow, 

young fallow, rice and weeds, rice, rubber monoculture, IRA) 

Vegetation Plot vegetation 

Fallowlength Indicates age of plot laying fallow 

Fertility Auxiliary variable to calculate yield 

Yield Rice yield, depends on fertility 

Rubber Indicates if rubber is planted on patch and age of trees 



Illipe Indicates if illipe nut trees are planted on patch and age of trees 

Patch_alpha  Tree Fisher’s alpha 

Patch_basal Basal area 

Patch_tree_richness Tree richness  

Patch_density Tree density 

Bird_richness Species richness of birds 

Biomass Above-ground biomass in C Mg / patch 

Vegetastipatch Land cover according to GIS data 

River Indicates location of rivers 

River-prox Indicates patch proximity to a river 

Nationalpark Indicates location of national parks 

Table 2: Patch variables. 

Process overview and scheduling 

The model proceeds in annual time steps, and simulations were run for 60 years. Within each 

time step, six modules are processed in the order corresponding to figure 1. Within each module, 

the agents conduct the respective processes in a random order. 

 

Figure 1: Process overview.  

Note: orange: household agent procedures, green: landscape agent procedures, blue: general 

procedures.  



Design concepts 

Basic principles: Given the limited cognitive abilities of humans, farming households are 

assumed to follow a satisficing approach based on the concept of bounded rationality 

(Gigerenzer and Goldstein, 1996; Robinson et al., 2007; Schreinemachers and Berger, 2006; 

Simon, 1972). The landscape patches follow transition rules and are impacted by the farmers’ 

land use decisions. 

Emergence: Livelihood decisions determine land use, which in turn influences the development 

of land cover and future livelihood decisions. Thus, landscape dynamics emerge from the 

interaction between patches and farming households.  

Adaptation: Farming households adapt by taking past agricultural decisions and their 

subsequent situation in the present into account when deciding about livelihoods to fulfill 

caloric requirements. 

Fitness: Fitness-seeking is modelled as the objective to fulfil caloric needs as part of a 

satisficing procedure. As a secondary objective, households invest the excess labor to generate 

cash income. 

Sensing: Farming households know their own characteristics such as household labor, 

agricultural activities, etc. Furthermore, they are aware of the land use and which patch has 

been claimed by a household. Households also know about the labor requirements of each 

agricultural activity and market prices of the outputs. 

Interaction: Interaction between households takes place indirectly through competition for land. 

Stochasticity: The order of agents performing the procedures is random. The location of claimed 

plots contains stochastic elements. The initialization procedure comprises random elements 

with respect to the location of farms, initial cultivation of rice and rubber, vegetation, fallow 

length, and hence fertility, whose initialization values are drawn from random distributions. 

Observation: The main simulation outcomes computed every time step include livelihood 

choices, income generation, land cover, carbon sequestration, and biodiversity. Regarding the 

latter, bird species richness and Fisher’s alpha for trees signify the respective biodiversity 

levels. Additional biodiversity indicators reflecting further aspects of biodiversity include tree 

density, tree species richness, and basal area. 



Initialization 

The farming households are initialized according to a household survey. Specifically, their 

original farm size, number of (cultivated and fallow) plots, labor force, and location are directly 

derived from the survey data and are thus household-specific. Locations of plots are assigned 

randomly, but within a certain radius that corresponds to maximum distances between 

households and plots derived from the survey. Cultivation of rice and rubber is probabilistic 

with likelihoods corresponding to the share of households engaging as indicated in the survey 

(23% and 76%, respectively). Other land uses origin from GIS data. The setup of the 

biodiversity and carbon indicators is based on local data collection (Simamora et al., 2021) as 

presented in table 3. Fallow length is random and corresponds with vegetation. Fertility equals 

the fallow age.  

Vegetation class Setup 

Natural forest Vegetation: uniformly distributed between 20 and 40 
Basal area: 3.75 
Tree Fisher’s alpha: 50.487 
Tree density: 81 
Tree richness: 91 
Biomass: 36.7 
Bird richness: 81a 

Secondary forest Vegetation: uniformly distributed between 20 and 40 
Basal area: 3.53 
Tree Fisher’s alpha: 35.3 
Tree density: 96 
Tree richness: 85 
Biomass: 7.4335 
Bird richness: 68 

Old fallow Vegetation: uniformly distributed between 10 and 20 
Basal area: 0.75 
Tree Fisher’s alpha: 18.38 
Tree density: 67.5 
Tree richness: 39 
Biomass: 0.8119 
Bird richness: 69 

Young fallow Vegetation: uniformly distributed between 2 and 10 
Basal area: 0.25 
Tree Fisher’s alpha: 10.91 
Tree density: 48.5 
Tree richness: 25 
Biomass: 0.2 



Bird richness: 57 

Rice + weeds Vegetation: 1 
Basal area: 0 
Tree Fisher’s alpha: 0 
Tree density: 0 
Tree richness: 0 
Biomass: 0 
Bird richness: 1 

Rice Vegetation: 0 
Basal area: 0 
Tree Fisher’s alpha: 0 
Tree density: 0 
Tree richness: 0 
Biomass: 0 
Bird richness: 1 

Rubber monoculture Basal area: 2 
Tree Fisher’s alpha: 25.48 
Tree density: 54.7 
Tree richness: 69 
Biomass: 9.8 
Bird richness: 49 

Illipe rubber agroforestry Basal area: 2.7 
Tree Fisher’s alpha: 39.74 
Tree density: 132 
Tree richness 60 
Biomass: 13 
Bird richness: 60 

Table 3: Landscape agents’ setup. 

Input 

Data input is used for the initialization of the model: household survey data indicates household 

composition and energy requirements as described in table 1. GIS data provide information to 

setup the landscape agents (Laumonier et al., 2020a). The input for the biodiversity indicators 

and carbon sequestration origins from data collection on site (Simamora et al., 2021). Further 

inputs used include costs and benefits of the livelihood activities. The labor inputs origin from 

Suyanto et al. (2009). Labor inputs for trees are adjusted to account for the duration until trees 

reach maturity: accordingly, rubber is assumed to require 52 labor days per person per hectare 

in the first year, 26 in the years 2-5, and 99 afterwards as input (Suyanto et al., 2009). Illipe nut 

trees are assumed to require the same amount of labor input as rubber trees. However, after 

illipe nut trees mature at the age of eight, 99 labor days per person per hectare are only required 



every four years, when the illipe nut trees can be harvested. In the other years, 26 labor days 

per person per hectare are assumed to be required for maintenance. 20 labor days per person 

are assumed as input for illipe nuts processing. Whereas for rice a yield function following 

Jepsen et al. (2006) is used, annual outputs for rubber and illipe rubber system follow Winarni 

et al. (2017) and Wulan et al. (2006). Furthermore, rice is assumed to provide 1,650 kcal per 

kg. 1 kg rice costs 10,000 IDR, and the price for rubber is 6,500 IDR per kg according to the 

survey and Winarni et al. (2017). Illipe nuts cost 7,000 IDR per kg (Riko and Wardenaar, 2013; 

Winarni et al., 2017). Regarding processing, about 5 kg of raw illipe nuts yield up to 1 kg fat, 

which can be sold for about 100,000 IDR (Maharani et al., 2016).  

Submodels  

Calculate energy requirements 

As the first step of each simulation run, the households calculate their energy requirements 

based on the household size in adult equivalents (Chiputwa et al., 2015). For every adult 

equivalent, a minimum consumption corresponding to the average caloric consumption (1935 

kcal per person per day) from Kalimantan in 2015 (Indonesian Statistics Publications, 2020) as 

the aspired consumption threshold is assumed. During the same step, variables such as energy 

consumption are reset to zero. 

Calculate expected harvest 

Then, households estimate their expected harvest. Households may have engaged in agricultural 

cultivation in previous seasons and take the expected yields into consideration for their 

livelihood decision in the current year. This includes rice from swidden fields in the second 

year as well as rubber and illipe nut yields. Thereby, mature illipe nut trees can be harvested 

only every four years, whereas rubber in the agroforestry systems can be harvested every year 

once the trees matured. Rice yields are calculated following a yield function of Jepsen et al. 

(2006) calibrated to the study region 

𝑦 =
𝑎

1 + 𝑏 ∗ exp	(−𝑐 ∗ 𝑥) 

with a =783.7, b = 8.07, c= 0.52, and x = fertility. During the second year of swidden 

agriculture, the rice yield is assumed to be 50% of first-year-yields. Because the farmers 

anticipate these yields, they plan accordingly and allocate labor to the respective harvesting 

activities, which is thus subtracted from the available labor force.  



Livelihood decisions 

Based on expected harvest, households decide about additional livelihood activities in the 

current period. Given the cost of searching and comparing alternative actions combined with 

limited cognitive and computational abilities of humans, a bounded rationality approach 

including a satisficing heuristic was applied to simulate farmer decision making (Gigerenzer 

and Goldstein, 1996; Robinson et al., 2007; Simon, 1972). A decision tree represents decision 

making as a series of if-then-else statements as illustrated in figure 2. The baseline scenario 

considers rice and rubber, which are the main livelihood activities in the study area. The 

respective decisions depend on caloric needs and resource availability. Farming household 

prioritize to fulfill their caloric needs, which represents the aspiration threshold, through rice 

planting before engaging in market production of rubber (Magliocca et al., 2013; 

Wangpakapattanawong et al., 2017). If the households have claimed available plots, they 

choose to plant rice on the plot with the longest fallow age, which represents a preference for 

clearing secondary fallow over primary forest (Sorensen, 1996). Only if no such plot exists, the 

household decides to clear an unclaimed plot, located within a radius of six kilometers 

maximum, through slash and burning to plant rice there. The households continue planting rice 

until they expect their caloric needs satisfied. The maximum area for clearing unclaimed areas 

is set to four hectares per period. Once harvest meets the caloric needs, the households check 

whether they have more labor available. If that is the case, they engage in rubber tapping and 

maintenance. If still more labor is available, they decide to plant additional rubber monoculture 

as a cash crop. The maximum amount of rubber is restricted to 1.2 ha in line with survey results. 

 

 

Figure 2: Livelihood decision: Baseline scenario.  



Extending the baseline scenario (figure 3), farmers have the option to additionally plant illipe 

tree mixed with rubber agroforestry on their plots in riverbanks as an option to generate cash 

income. First, they harvest illipe nuts if it is possible in that season. Then, also in the 

agroforestry scenario, households aim to fulfill caloric requirements through swidden 

agriculture on already claimed or newly cleared plots. When the expected yields suffice to 

ensure food security, rubber has been tapped, and more labor is available, the households check 

whether they have fallow plots in proximity to a river available. If they do not, they plant rubber 

on another plot. If they do, they cultivate IRA on that plot. If still more labor is available to the 

household during an illipe nut harvesting season, they process the illipe nuts into fat.  

 

Figure 3: Livelihood decision: Agroforestry scenario. 

Harvest 

After household decisions are made, the households harvest their plots. As the illipe nut tree 

produces yield approximately every four years depending on weather conditions, illipe nut 

harvest is assumed to occur every four years for all trees simultaneously (Heri et al., 2020). In 

contrast, rubber (monoculture or as part of IRA) can be harvested every year. The households 



accumulate the calories and cash income generated from their livelihood activities. If a 

household is not able to produce the required calories, it is marked as food insecure.  

Update of variables and charting 

Update of the farmers includes the number of farmers who chose the respective livelihoods, 

mean caloric consumptions, and income. Furthermore, number of plots claimed, plots laying 

fallow and plots cultivated, total farm size, and the share of plots with agroforestry are updated. 

Besides, number of landscape agents with the various vegetation classes, mean biodiversity 

indicators of the patches, and carbon sequestered according to the land use are calculated.  

Vegetation transition 

As the last step of the modelling cycle, the vegetation classes undergo transition dependent on 

their fallow age and use according to the swidden agriculture cycle (Figure 4).  

 

Figure 4: Cycle of swidden agriculture. 

Before farmers can cultivate plots, they need to clear them through slash and burn activities. 

Rice planted on cleared (swidden) fields also provides yield in the second year after planting, 

when weeds grow on the fields as well. In the consecutive periods, the fields lay fallow to 

regenerate their fertility until the farmers decide to clear and cultivate them again. During that 

fallow period, plots transition from young fallow to old fallow to secondary forest unless they 

are cleared (table 4). Also patches with forest vegetation can be cleared for rice cultivation 

through slash-and-burning.  

To represent the fertility and vegetation on the swidden fields, fallow age, vegetation, and 

fertility increase by one during every time step except when the plot is cleared. In that case, 

fallow age and vegetation are reset to zero. Only fertility, whose maximum value is restricted 

to 12, is not reset until the harvest is completed because it is needed to calculate the yield since 

fertility improves yield. For vegetation, a maximum of 30 is assumed. With increasing fallow 



length and change in vegetation, also the biodiversity indicators are modified, corresponding to 

the respective land use as indicated in table 3. Lastly, rubber trees exceeding the age of 25 are 

assumed to die and be replaced. Illipe trees can reach the age of 99 years, which is longer than 

the simulated time span and thus is not considered in this context. 

Vegetation class Transition into 

Rice Rice + weeds 

Rice + weeds Young fallow (up to 10 years) 

Young fallow Old fallow (11-20 years) 

Old fallow Secondary forest (> 20 years) 

Table 4: Transition of vegetation classes. 

Climate change scenario 

Extending the model, a climate change scenario (CCS) simulates rice yield reductions as a result 

of rising temperatures. Thereby, rises in temperature of 1.5° Celsius are simulated (IPCC, 2018) 

that lead to relative decreases in rice yields of 12.6% (Yuliawan and Handoko, 2016).  
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