
This is an agent-based model to study the e�ects of re�exivity in the way innovations

spread in a social network. Speci�cally, we propose to endow agents with a lightweight

cognitive mechanism to allow them to recognize an emergent adoption pattern in the

system and change their behavior according to that awareness. Our purpose is to study

the e�ects created by the inclusion of re�exivity in the system. We must note that our

model is a modi�ed and extended version of a model previously developed by Delre et al.

(2007) (our additions to their model will be made clear below).

At the beginning, agents are placed in the nodes of di�erent kinds of social networks

�scale-free, small world and random ones� and a small proportion δ of the them is

speci�ed as adopters of a new product introduced in the system. Then, at each time

step, a non-adopter decides to adopt this product if she comes into contact with another

adopter, and either her personal utility is greater than a certain minimal utility or she

has been persuaded to adopt because of marketing. If Di is the decision of agent i to
become an adopter, then

Di =

{
1, Ui ≥ Ui,min or λ > si

0, otherwise
(1)

where Ui is her current utility, Ui,min her minimal utility, si her susceptibility to marketing
and λ a constant that quanti�es the amount of e�ort that goes into marketing. Ui,min

and si are drawn from a uniform distribution U (0, 1), with the �rst value being assigned

to agent i before the simulation starts and the second one every time i is about to take

her decision.

We consider that Ui depends on two kinds of social in�uences. First we have a local

in�uence, which determines how useful it is for an agent to adopt given two factors: the

rate of adoption of her closest neighbors and her individual preference1. If we call the

utility derived from this in�uence as ULi, we have that

ULi = β · xi + (1− β) · yi (2)

xi =

{
1, Ai ≥ hi
0, otherwise

(3)

yi =

{
1, pi ≤ q
0, otherwise

(4)

where β is called the coe�cient of social in�uence, and it weights the importance of an

agent's peers on her decision; Ai is the fraction of adopters among her closest neighbors2;

hi is the minimal fraction of adopters among those neighbors necessary to arise the desire
to adopt; pi is her individual preference, and q is the quality of the product she wants to

adopt. Both hi and pi vary uniformly between 0 and 1, and they are set at the beginning

1This term accounts for the fact that an agent can decide that the product suits her personal needs

even if their friends have not adopted it yet.
2If a node has no neighbors, this value is zero.
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of the the simulation for each agent. Whereas β and q are global parameters of the model
that take values between 0 and 1.

It is important to mention that the original model of Delre et al. (2007) goes up to

this point. In other words, it describes di�usion of innovations as a process driven only

by local in�uence, through equations 2, 3 and 4. The rest of this section corresponds to

our additions to that model.

Besides local in�uence, our model also incorporates a global in�uence, which leads

agents to adopt when they notice the appearance of a sizable portion of adopters in the

population, even if they can not perceive a signi�cant change in their surroundings. The

simplest measure of the current amount of adoption in the system is the percentage of

adopters. However, that does not take into account that agents are placed in a social

network. In other words, the percentage disregards the structure of social relations that

arise among adopters during the di�usion process, which depends on the underlying

network topology. To overcome this limitation, we decided to use instead the average

size of connected components in the subgraph of adopters. These components �called

components of adopters from now on, for simplicity� correspond to subgraphs composed

entirely of adopters and in which any two of them are connected by a path.

As this average size becomes bigger, the more useful it should be for an agent to join

the trend and become one more of the crowd. Therefore, we de�ne global utility in our

model as

UG =
C

N
(5)

C =

nc∑
j=1

(nj
N

)
nj , nj > 1 (6)

where C is the (weighted) average size of components of adopters (cf. Fleiss et al., 2003, p.

441), N is the total number of agents, nc is the number of components at time t, and nj is
the number of adopters in component j3. We do not take into account components of size

one in equation 6 because we assume that agents do not acknowledge single individuals

as categories of adopters (or non-adopters); that is, a focal agent begins to realize the

existence of categories when groups of two or more connected adopters (or non-adopters)

appear in the system. These categories of individuals do not necessarily need to be linked

to the focal agent. As can be seen in Figure 1, C has the nice property of taking di�erent

values for di�erent network con�gurations, even though the total number of adopters be

the same in them.

When C is small, global utility also is, hence it should not play a part in agents'

decisions. However, as C increases and gets closer to a certain critical mass, its e�ect

should be felt more strongly and start in�uencing agents accordingly. To model this, we

endow agents with a re�exive capacity to allow them to recognize that that critical mass

has been reached or it is close to be reached. Only after becoming aware of that fact and

being exposed to it for a certain amount of time, an agent can make use of UG as part

of her decision strategy.

3Note that UG can only take values between 0 and 1 due to the way it is de�ned. This will be important

in the de�nition of personal utility below.
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(a) (b)

Figure 1: Average size of components of adopters C for two di�erent network con�gura-

tions with the same number of adopters (adopters are highlighted in green).

(a) With 20 agents in total and two components of adopters of sizes four and

seven, we have C = 42+72

20 = 3.25 (see equation 6). (b) With a single compo-

nent of size eleven, we have C = 112

20 = 6.05 (i.e. almost twice the one for the

previous con�guration).

Speci�cally, we assign agents at the beginning of the simulation a re�exivity index

αi ∼ U (0, 1), to account for heterogeneity in their re�exive abilities. During each time

step, we compare this index to an emergence factor E, that increases in value (from 0 to

1) as the global utility approaches the critical mass. We de�ne this factor through the

following logistic equation

E (UG) =
1

1 + e−φ(UG−Mc)
(7)

Here Mc is called the critical mass and corresponds to the fraction of adopters in con-

nected components needed for agents to regard that an emergent adoption pattern has

appeared in the system. φ, on the other hand, controls how sharp the transition is from

not detecting that the system has reached Mc to actually doing it. Both Mc and φ
are global parameters, with Mc limited to have values between 0 and 1. We consider

an agent becomes aware of the appearance of Mc when the condition E (UG) > αi is
reached. Figure 2 displays a plot of equation 7 and its relationship to αi.
Finally, agents in our model do not start using the knowledge gained through re�exivity

immediately after becoming aware of a global pattern. Instead, we record the amount of

time that has passed since each agent detected Mc. Only when that time is higher than

a personal delay threshold, they can use global utility for their decisions. We obtained

this idea from generalized models of contagion (Dodds & Watts, 2005, 2004). In these

models agents receive one dose of the contagious entity (e.g. a disease or rumor) per time

step, and an agent becomes infected when the amount of doses surpasses a threshold. In

our case, we use this concept to model that agents need to be exposed to the perception

of an emergent adoption trend for a certain period before it can have an e�ect on them.

This seeks to capture the fact that people responses occur at di�erent time scales because

there are several psychological factors (e.g. feelings and willingness to act) that in�uence

their decision process (Sornette, 2006).
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Figure 2: Plot of the emergence factor E as a function of the global utility (see equation

7), along with agent's i re�exivity index αi and the critical mass of adopters

in components Mc. As an example, the �gure shows a value of αi = 0.2, above
which the emergence E(UG) will be taken into account by the agent in her

decision to adopt. The dashed gray line corresponds to the �rst value of UG
for which E > 1× 10−5. We have arbitrarily decided that this value of UG sets

the instant from which agents can make use of global utility in their decisions.

Given equations 2, 5 and 7, we de�ne personal utility Ui as

Ui =

{
ULi + UG − ULi · UG, E (UG) > αi and ta > di

ULi, otherwise
(8)

where ta is the time elapsed since agent i realizes the appearance ofMc and di is her delay
threshold before including that awareness in her utility. As can be seen, equation 8 re�ects

that when agents detect emergence due to their re�exive capacity and enough time has

passed to be in�uenced by that information, their utility depends on the disjunction of

ULi and UG
4. In other words, at that point they decide to adopt according to their most

preponderant utility, which can be either local or global. Before that agents' decisions

are governed by local factors only.
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