
HyperMu’NmGA - ODD Protocol

Hypermutations in a NetLogo minimal genetic algorithm

Cosimo Leuci

The description of the model follows the ODD (Overview, Design concepts, Details) protocol for individual
and agent-based models1.

The model is implemented in NETLOGO v. 6.2 and requires that the interpreter be downloaded and in-
stalled from the servers at Northwestern University2.

1. Purpose

A minimal genetic algorithm (mGA) was preliminarily developed to search for the solution of
an elementary arithmetic problem3. It has been modified to explore the effect of a mutator
gene and the consequent entrance into a hypermutation state. The phenomenon is particularly
important in some types of tumorigenesis4, 5 and in a more general way, in cells and tissues
submitted to chronic sublethal environmental or genomic stress6, 7.

Since a long time, some scholars suppose that organisms speed up their own evolution by
varying mutation rate, but evolutionary biologists are not convinced that evolution can select

1V. Grimm, S, F. Railsback, C. E. Vincenot, U. Berger, C. Gallagher, D. L. DeAngelis, Bruce Edmonds, J. Ge, J.
Giske, J. Groeneveld, A. S. A. Johnston, A. Milles, J. Nabe-Nielsen, J. G. Polhill, V. Radchuk, M.-S. Rohwäder,
R. A. Stillman, J. C. Thiele, D. Ayllón (2020, March 31) TheODDProtocol for Describing Agent-Based and
Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism Journal of
Artificial Societies and Social Simulation 23(2) 7

(doi: 10.18564/jasss.4259 Url: http://jasss.soc.surrey.ac.uk/23/2/7.html)
2Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Com-
puter-Based Modeling, Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL.
3C. Leuci (2020, January 30). MGA - Minimal Genetic Algorithm (Version 1.1.0). CoMSES Computational Mo-
del Library. Retrieved from: https://doi.org/10.25937/db7w-zt41
4 Loeb L. A. (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nature
Reviews Cancer 11: 450 – 457 (doi: 10.1038/nrc3063)
5 A.E. Tijhuis, S. C. Johnson, S. E. McClelland (2019) The emerging links between chromosomal instability
(CIN), metastasis, inflammation and tumour immunity. Molecular Cytogenetics 12:17 (doi: https://doi.org/
10.1186/s13039-019-0429-1)
6McClintock B. (1984) The significance of responses of the genome to challenge. Science 226 (4676): 792 - 801
(doi: 10.1126/science.15739260)
7 Mantovani A., Allavena P., Sica A., Balkwill F. (2008) Cancer-related inflammation. Nature 454: 436 – 444
(https://doi.org/10.1038/nature07205)

1

http://jasss.soc.surrey.ac.uk/23/2/7.html
https://doi.org/10.25937/db7w-zt41
http://ccl.northwestern.edu/netlogo/

a mechanism promoting more (often harmful) mutations looking forward an environmental
challenge8,9.

Hypermutations in NetLogo mGA (or HyperMu’NmGA or more brieflyHyperMu) was mainly
suggested by the studies of Taddei et al.10 and Sniegowski et al.11. They led their researches
on asexually reproducing cells (E. coli) engaged in an adaptation experiment. Our model al-
lows the influence of homologous recombination in the control of mutators element diffusion
to be simulated. This second feature is related to sexual reproduction maintenance, that is an-
other debated issue in evolutionary biology12,13.

The characterization of hypermutations in GAs show an increasing interest for applicative
purpose, as well. Actually, GAs are powerful search algorithms that can be applied to a wide
range of problems and can be exploited as engines in thinking machines. The choice of what
values to assign to mutation rate is a vital factor in the success of any GA; generally, paramet-
ers setting is accomplished prior to running a GA. Since the best mutation rate depends on the
specific problem and could be changed during evolution, the proposed strategy is to let the al-
gorithm to search by itself the best mutation rate14. In other words, some parameters as muta-
tion rate could be adjusted by self-adaptation via hypermutation cycles, as theorized in some
biological systems15.

2. Entities, state variables, and scales

The model is implemented in NetLogo programming environment, so the agents are typically
named “turtles”. In HyperMu, one of their main attributes is the “chromosome” that is a string
representing one candidate solution to the problem:

“find the greatest natural number composed of a given number of digits”.

8E. Pennisi (1998, August 21) How genome readies itself for evolution Science 281:1131 - 1134 (doi: 10.1126/
science.281.5380.1131)
9M. Chicurel (2001, June 8) Can organisms speed their own evolution? Science 292: 1824 – 1827 (doi:
10.1126/science.292.5523.1824)
10Taddei, F., Radman, M., Maynard-Smith, J., Toupance, B., Gouyon, P. H., and Godelle, B. (1997, June) Role of
mutator alleles in adaptive evolution Nature 387: 700–702. https://doi.org/10.1038/42696
11Sniegowski, P., Gerrish, P. and Lenski R. (1997, June) Evolution of high mutation rates in experimental popu-
lations of E. coli Nature 387: 703–705. https://doi.org/10.1038/42701
12Becks, L., Agrawal, A.F. (2012, May) The Evolution of Sex Is Favoured During Adaptation to New Environ-
ments. PLoS Biol. 10 (5): e1001317. https://doi.org/10.1371/journal.pbio.1001317
13Hoffmann, A.A., and Hercus, M.J. (2000, March) Environmental Stress as an Evolutionary Force. BioScience,
5 (3): 217-226. https://doi.org/10.1641/0006-3568(2000)050[0217:ESAAEF]2.3.CO;2
14Serpell, Mand Smith J. E. (2010) Self-Adaptation of Mutation Operator and Probability for Permutation Re-
presentations in Genetic Algorithms. Evolutionary Computation 18(3): 491–514
15Galhardo R. S. Hastings P. J. and Rosenberg S. M. (2007) Mutation as a Stress Response and the Regulation of
Evolvability. Crit Rev Biochem Mol Biol. 42(5): 399–435

2

https://doi.org/10.1641/0006-3568(2000)050
https://doi.org/10.1371/journal.pbio.1001317
https://doi.org/10.1038/42701
https://doi.org/10.1038/42696

The number of digits is set initially by the user thanks to the slider GENES NUMBER, indeed
each digit can be seen as a “gene” of the chromosome.

The candidate solution codified by the chromosome can be more or less close to the optimal
solution: this value is quantified by the variable “fitness”; the evaluation methods are de-
scribed in the submodels section.

The chromosomal genes could be considered as structural genes; turtles own three other vari-
ables that can be seen as regulatory genes: the most important one for our purpose is the
mutator gene that quantifies the severity of mutational events. If planned, the model can ac-
quire two other regulative genes: mutator-switch and mate-switch.

The spatial position of turtles have no importance in this model, and no environmental inputs
are simulated. The environmental stimuli are substituted by the computational challenge given
by the problem submitted to the agents and influencing their reproductive success.

3. Process overview and scheduling

The process follows the general structure of a GA that is shown below:

Figure 1. Flowchart of a generic GA

3

In more detail, for HyperMu we have:

1 A population of turtles is generated. The number of turtles can be previously set by the
user.

2 The chromosome of each turtle is built converting the value 10n -1 into the correspond-
ing string (n is the number of digits composing the wanted solution that is equal to the
structural genes inserted into the turtles’ chromosomes).

3 The fitness is evaluated according to the selected "method.

4 The worst and the best solution in the population are determined on the basis of
turtles’ fitness.

5 The two values are plotted

6 Stop conditions16.
7 One of the best performing turtles reproduces a part of the genome by crossover

(sexual reproduction) or entirely by cloning (asexual reproduction).

8 The fitness of the new chromosome is evaluated.
9 A mutational event happens with a frequency set by the user thanks to the slider

BASIC_MUTATION-RATE.

10 The fitness of the mutant chromosome is evaluated.
11 Some details about mutators gene activity and distribution is displayed. Another dia-

gram displays the number of asexually or sexually reproducing turtle

12 Return to the item (4).

16 Some stop conditions are inserted here for our experiments (mainly executed under these parameters set: turtle
number 85, number of structural genes 12, basic mutation-rate 5*10-6); they are useful when an experimental
program is automated through the tool “BehaviorSpace” and are configured as follows.
- In presence of mutator genes, often their frequency and activity can increase, so it is interesting to follow their

fate after the best solution is reached; in this case, the experiment is stopped when the average value of the
mutator genes is reduced by 30% with respect to the default value (i.e. 1); but if this condition is not reached
at 500000 ticks after the problem solution, muatators’ value reduction is considered potentially endless and
the experiment is stopped.

- If the mean of mutators genes value is under one and the ticks number is more than 750000 in the condition
we have used in our experiments program the experiment execution is stopped because the evolutive potential
is very low and is unlikely an ultimate solution could be found.

- If mutator genes are not active, the experiment ends when the best solution is reached.

4

Figure 2. Part of the user interface of HyperMu’NmGA 1.1.0. The executable file is downloadable
from the Comses.net library; it requires that the NetLogo 6.2 interpreter be downloaded and in-
stalled from the server at Northwestern University.

https://ccl.northwestern.edu/netlogo/download.shtml
https://www.comses.net/codebases/bd4d9bb7-5b2b-4a12-a3e6-49747363e536/releases/1.1.0/

Figure 2. Part of the user interface of HyperMu’NmGA 1.1.0

5

4. Design concepts

The design of a GA assumes that optimization of a fitness function can be the consequence of
two processes: casual mutation and selective reproduction, as occurs in breeders work; to se-
lect (one of) the best individuals, the algorithm must compute the fitness function for each of
them. Generation after generation, the optimized trait emerges by artificial selection.

The adaptive process generated by the GA is then exploited as background to inspect the dy-
namics of mutator (or antimutator) alleles inside the turtles’ population. To shed light about
this process, we have designed the model assuming the following statements:

 Mutator genes come from an impairment process of hypothetical genes involved in
genome stabilization; the effect is a consequence of the basic mutation rate acting on
each genome.

 The phenotype related to the different mutator alleles is a quantitative trait and it can
assume positive or negative decimal values. When it is negative, it protects against
mutations, on the contrary, when positive it enhances the severity of mutation. In the
first case they can act as some proto-oncogenes, that are able to protect against muta-
genesis, repairing DNA mismatch. In the second case they can act as some oncogenes
that enhance mutagenesis and tumorigenesis17;

 mutator genes can feedback on themselves leading toward a more severe mutagenic
activity or toward a reversion (triggering a hypermutations’ cycle).

5. Initialization

The initialization of one experiment takes place after Setup button activation. It includes the
creation of some turtles whose number is set by Turtles-Number slider. Initially, each turtle
carries one chromosome codifying for a number representing a candidate solution to the prob-
lem: its value is initially assigned for all turtles by the formula:

10n-1

where n is given by the slider GENES-NUMBER.
Before starting a search, there are other parameters to set: their importance will be discussed
in the submodels sections.

6. Input data

The model does not use input data to represent time-varying processes

17Sherr, C. J. (2004, January 23) Principles of Tumor Suppression Cell, 116: 235–246. https://doi.org/10.1016/
S0092-8674(03)01075-4

6

https://doi.org/10.1016/S0092-8674(03)01075-4
https://doi.org/10.1016/S0092-8674(03)01075-4

7. Submodels

HyperMu includes three submodels: fitness functions, reproduction, and mutation.

1. FITNESS FUNCTIONS. The fitness function can be evaluated by two different methods:

A.“string-value” converts the chromosome string into its numerical value;

B. “hamming” evaluates the Hamming distance18 complement (that is the proximity) to the
best chromosomal string by counting the number of 9 digits.

The fitness range changes as a consequence of the selected fitness-function: it is between 10n-1

and 10n-1 for string-value mode; it is between 0 and n for hamming mode (in this case n rep-
resents the GENES-NUMBER).

2. REPRODUCTION. The user can choose to work with a population reproducing sexually,
asexually or a mixed population of sexual and asexual turtles. In the last case, the reproduc-
tion style (determined by mate-switch) will be treated as a genetic character. Anyway, repro-
duction is a selective event because it involves always (one of) the best performing turtle
called donor, and another one randomly chosen called recipient.

A. ASEXUAL REPRODUCTION: CLONING. In asexually reproduction, donor turtle inserts its
entire genome (structural genes and regulative genes) into the recipient turtle.

B. SEXUAL REPRODUCTION: RECOMBINATION. Sexually reproducing turtles exhibits a kind
of homologous recombination, similar to the bacterial process related to conjugation,
more than the eukaryotic meiotic crossing-over: indeed just the recipient turtles varies
its genome; on the contrary, the donor turtle replicates part of its chromosome into the
corresponding loci of the second one (the recipient chromosome) so that no turtle is re-
moved from the world, but one of them changes part of its chromosomal sequence by
hybridization (see figure 4).

18 „Hamming distance” from Wikipedia: https://en.wikipedia.org/wiki/Hamming_distance

7

Figure 3. Comparison of the two fitness functions in
a simplified system: the strings are binary and n is 3.
In a “string-value” mode the string 001 has a lower
numerical value and consequently also lower fitness
than the string 100; in the “hamming” mode would
not be any difference between the two strings be-
cause both require at least two mutations to reach
the higher fitness string 111. The two functions give
rise to different fitness landscapes: the more regular
one is hamming, because it contains only one peak,
while the string-value contains more irregularities,
which creates a more complex fitness landscape.
(Figure from Wikipedia)

https://en.wikipedia.org/wiki/Hamming_distance

3. MUTATION. Mutation events occur randomly in one turtle and one loci with a frequency
given by the slider BASIC_MUTATION-RATE: it can be seen as the level of environmental
mutagenicity acting on a single gene.

The mutations are always point-mutations, in the mode conventionally named “simple muta-
genesis”. If mutagenesis does not follow a "simple" mode, the mutations’ severity varies for
each turtle, according to its mutator gene that determines a multimutation process and/or a hy-
permutation process. Multimutation means that more point-mutations can hit the chromosome
at the same time: the number of point-mutations is determined by mutator gene if it is greater
than one, but if it is under one, no mutation will alter the structural genes. Nevertheless, it
could be that the same mutator undergoes to mutagenesis: the frequency depends on the para-
meter HYM-RATIO whose value is set by a slider; if turtles’ genes were physical entities,
HYM-RATIO could be approximatively the ratio between the lengths’ sum of regulative genes
and the length of one turtles’ entire genetic material.
If mutagenesis does not follow the "simple" way, it will be active the mutator gene that influ-
ences the number of mutation on the chromosome and is able to mutate itself starting a hyper-
mutation cycle. The user can select one of the hypermutation modes thanks to the chooser
MUTATE_BY; it allows to choose: “additive” (weaker mode) and “multiplicative” (stronger
mode); it is possible to have a population where both modes coexist; in this case, the hyper-
mutation stile will be treated as a genetic trait (determined by mutator-switch) that can mutate
and recombine.

Our turtles are not provided of metabolism or physiological states, so we have used different
algebraic equations to produce different processes of mutators’ mutation. Mutator is represen-
ted as a quantitative variable: in the first case, when it undergoes to mutation, it is altered by a
random variable (assuming the values -1, 0, or +1) that is added to mutator; in the second
case, the same random variable is increased the number of times as the same mutator value
and then added to the current value of mutator. In both cases the mutator value can increase or
decrease randomly.
One of the main goals of the model is to detect if the GA select some particular alleles and if
this leads to a variation in the performances of the GA.

8

Figure 4. A representation of recombination between a donor's chromosome and a recipient
chromosome; the two split points are chosen randomly, and the chromosomes are treated as
circular.

The operator leading to the variation of mutators’ value is represented below; it does not tend
to replicate any empirical set of data about self-mutagenesis kinetics; it has been built to out-
put two different dynamics (stronger/weaker) in order to characterize their behaviour when
they are embodied into the adaptive process created by a GA, working under two different re-
productive regimens. The operator is designed to increase or decrease the mutator value with
the same probability; the GA’s artificial selection will choose the most suitable variants if
they are caught by the selection filter, otherwise, they will undergo toward genetic drift.

Mutating mutators

 σ: binary value of mutator-switch (agent variable);
 μ: decimal value of mutator alleles (agent variable);

 ξμ: decimal value of mutators expressivity (global variable);
 X: random discrete variable, taking on a value from the set{-1,0,+1}, each with probability1/3.

9

	HyperMu’NmGA - ODD Protocol
	1. Purpose
	2. Entities, state variables, and scales
	3. Process overview and scheduling
	Figure 2. Part of the user interface of HyperMu’NmGA 1.1.0
	4. Design concepts
	5. Initialization
	6. Input data

