
Model overview 

This agent-based model (ABM) simulates trait-based population-level responses to 

climatic and environmental change. The premise of ABMs lies in the principle that micro-level 

agent-agent and agent-environment interactions produce emergent macro-level outcomes for 

systems too complex or too specific to model with standard structural equations (Tisue & 

Wilensky, 2004). Our rule-based ABM simulates the fates of metapopulations whose fitness is 

controlled by an evolving functional trait that responds to selection based on environmental 

conditions. Functional traits are phenotypic characteristics that interface with the environment 

(McGill et al., 2006; Polly et al., 2016). Environmental change potentially affects trait 

performance and population fitness, consequently driving trait evolution or population 

extinction., which in turn affects functional trait distribution in local community assemblages 

(Jønsson et al., 2015; Morales-Castilla et al., 2015; Polly & Head, 2015). 

The functional trait modeled is tooth crown height of mammalian herbivores, such as 

horses. The evolution of high-crowned teeth in these herbivores is climatically driven; in fact, the 

relationship between crown height, environment, and climate is well-understood both 

functionally and evolutionarily (Damuth & Janis, 2011; Eronen et al., 2010; Fortelius et al., 

2002; King et al., 2005; Semprebon et al., 2019). In environments with abrasive or dusty/gritty 

vegetation, higher-crowned (hypsodont) teeth provide greater fitness despite the metabolic and 

mineral costs of producing them. The silica content of grass and gritty arid environments select 

for hypsodonty; non-gritty forests select for brachydonty (low-crowned teeth). Although the 

specifics of our model are teeth, diet, and environment, the implementation is abstract enough 

that results can be generalized to other climate-environment-trait systems. 

Our virtual world consists of a continent that is gridded in spatially distinct habitat 

“patches.” Each patch denotes a local environment, which determines the local fitness optimum 

for inhabitant populations. Each “agent” in this model represents one local population of a 

species. Each species can consist of many populations, each of which occupies a single patch, 

thus making them the equivalent of metapopulations (sensu Hanski, 1999). A patch can be 

occupied by a maximum of one agent of any given species—the same patch can be occupied by 

multiple agents, given that the agents are of different species. Each individual run is divided into 

temporally distinct “time steps.” 

Our model incorporates five key processes: climate change, dispersal (including gene 

flow), selection, speciation, and extirpation. Model parameters can be adjusted for each of these 

mechanisms except for speciation, which we treat as a constant process so that our model runs 

end with a predictable number of species with identical patterns of common ancestry and 

divergence times so that variance between model runs is due only to change in climate and the 

aforementioned controllable demographic parameters. Populations do not compete with one 

another; similarly, this helps the model largely focus on population-environment interactions in a 

changing climate. During each time step, each local population undergoes selection, dispersal, 

and the possibility of extirpation. (Populations also undergo genetic drift.) Speciation events act 

at predetermined time steps. Additionally, climate change periodically produces shifts in 

precipitation and biome type that influence the selective optimum for patches. The crux of the 

model lies in the interaction of these mechanisms. Adjusting parameters either independently or 

simultaneously allows us to test which combinations confer resilience under gradual, moderate, 

or rapid climatic change scenarios. For the purposes of this model, we measure resilience via 

three metrics: number of species existing at the end of each model run (species number), number 



of populations of each species (species abundance), and successful colonization of new biomes 

that arise during the run. 

Our ABM extends Polly et al. (2016)’s trait-climate-environment model in two important 

ways. This model integrates climate change and dynamic environments; the previous model was 

limited to static environments. Additionally, we have ported the model to NetLogo 6.1.1. 

Underlying mechanics remain consistent with the earlier model. Readers are referred to it for full 

justification of implementation and parameter choices. 

 

NetLogo 

NetLogo is an ABM programming environment suitable for simulating spatially and 

temporally explicit phenomena (Tisue & Wilensky, 2004; Wilensky, 1999). Spatial settings and 

rules for agent behavior are highly customizable (Tisue & Wilensky, 2004). We used NetLogo’s 

BehaviorSpace tool to record the numerical output of each model run; spatial results were 

identified through model interface images. 

 

Model algorithm 

Each individual run lasts for 400 time-steps. Several parameters—selection intensity 

(adaptive peak width), phenotypic variance, trait heritability, dispersal probability, and 

extirpation probability—can be adjusted in the setup. Populations undergo extirpation, dispersal, 

selection, gene flow, and genetic drift every time step; speciation occurs every 100 steps. 

 

Model world and characteristics of patches 

The model world consists of the virtual continent, Hesperia, with varied topography. 

Hesperia is divided into 822 spatially distinct square patches, each of which is assigned values 

for grit, temperature, and mean annual precipitation. Patches are categorized into vegetative 

biomes (tundra, forest, desert, or grassland) based on temperature and precipitation (Whittaker, 

1967). In this way, Hesperia is environmentally heterogeneous. Local selective optimums for 

hypsodonty values are calculated based on grit, precipitation, and biome type. Climate becomes 

more arid as the model progresses, transforming forest into grassland and desert and shifting 

selective optimums. 

We determined biome type (grassland, tundra, forest, or desert) from a function of 

temperature and precipitation following Whitaker (1967). If temperature ≤  -5 °C, the patch is 

categorized as tundra biome. If temperature > -5 °C and precipitation ≤ 20 cm/year, the patch 

biome is categorized as desert. If temperature ≥ 5 °C and precipitation > 20 cm but ≤ 90 cm, the 

biome is categorized as grassland. All other patches are classified as forest biomes. 

 

Characteristics of populations 

 Each local population is represented in NetLogo using an agent called a “turtle.” Each 

population is assigned numerical characteristics: ID number, species assignment, trait value, and 

population size (number of individuals, which determines rate of genetic drift). Population trait 

value represents the population mean. For consistency with the 2016 model, population size is 

set to 100 individuals. Names assigned to species in the model output indicate species ancestry 

and the model step at which it originated.  

 

Functional trait and its local optimum 



Tooth crown height is our functional trait. In mammals, crown height varies with 

environmental parameters affecting diet abrasiveness. The selective optimum (ideal trait value) 

in any local environment (patch) is a function of grit g, precipitation p, and biome b. The 

optimum ranged from 0 (low-crowned or brachydont) to 3 (high-crowned or hypsodont). High-

crowned teeth are more suited to dry and gritty environments and tough vegetation; in contrast, 

low-crowned teeth are more suited to wet environments with little grit and tender vegetation 

(Janis and Fortelius, 1988; Damuth and Janus, 2011). Following Polly et al. (2016), the local 

selective optimum, 𝜃i, for each patch was set as a function of precipitation, biome, and grit, 

where 𝑔 is grit, p is precipitation, and b is biome. 
𝜃i = 𝑔 + 𝛿[𝑝] + 𝛿[𝑏]   , 

where 𝛿[𝑝] is the piecewise function: 

For 𝑝 ≤ 100, 𝛿[𝑝] = 100 - p 

For 𝑝 > 100, 𝛿[𝑝] = 0 

and 𝛿[𝑏] is the piecewise function: 

 

For b = “forest” or “tundra”, 𝛿[𝑏] = 0 

For b = “desert”, 𝛿[𝑏] = 0.5 

For b = “grassland”, 𝛿[𝑏] = 1 

 Population fitness is determined by proximity of mean functional trait value and local 

selective optimum of the occupied patch. Smaller differences between the actual and optimal 

trait value indicate higher fitness. 

 

Extirpation 

Extirpation is the local extinction of a population from a patch. Species extinction occurs 

if all local populations of the species are extirpated. Extirpation occurs stochastically, with a 

greater probability p(e) in populations with trait value far from local optimum:  

 p(e) = ESF * |z - θi| / APW 

where z is population trait value, θi is local selective optimum, ESF is extirpation scaling factor 

(a user-controllable parameter ranging from 0 to infinity), and APW is adaptive peak width 

(selection intensity; see below). Essentially, if trait value is far from the selective optimum 

relative to selection intensity, extirpation probability increases toward 1.0. Setting ESF < 1 

decreases the probability, whereas setting ESF > 1 increases it. This method is comparable to the 

Lynch and Lande (1993) function and identical to that of Polly et al. (2016). 

 

Dispersal 

During a dispersal event, a turtle creates a copy of itself on an adjacent terrestrial patch. 

The user-controllable dispersal probability parameter (ranges from 0 to 1) determines probability 

of dispersal into an individual adjacent terrestrial patch. 

 

Selection and genetic drift 

Each step, the trait value of each population is modified by selection: 

znew=h2vzold(i-zold)w2 

where zold is trait value before selection, θi is local selective optimum, w2 is adaptive peak width 

(equal to standard deviation of the normal curve used to model the adaptive peak), h2 is 



heritability, and v is phenotypic variance. This equation, used in Polly et al. (2016), comes from 

theoretical evolutionary genetics models of adaptive peaks (Arnold et al., 2001; Lande, 1976; 

Simpson, 1944). 

Each trait value is further modified by a neutral genetic drift event. The genetic drift term 

is randomly chosen from a normal distribution with mean 0 and standard deviation h2 v / N, 

where h2 is heritability, v is phenotypic variance, and N is population size. This standard 

deviation derives from Lande (1976). The genetic drift value is added to znew. 

 

Genetic flow 

Each patch can only support one turtle of each species. After dispersal, if two or more 

populations of the same species occupy the same patch, gene flow between populations occurs. 

The amalgamated population takes on the mean of the populations occupying the patch and the 

local population size is reset to 100. 

 

Speciation 

Speciation via a simplified peripheral isolation model occurs at time-steps 0, 100, 200, 

and 300 (Polly et al., 2016). Every species undergoes the same speciation process. First, the most 

peripheral turtle of each species is determined. The mean x-coordinate (xmean) and mean y-

coordinate (ymean) of all turtles of species k represent the geographic center of the species range. 

The population located farthest from the center (determined by Euclidean distance) becomes the 

founder of a new species on the same patch. The “child” population is identical to the “parent.” 

The four speciation events will result in a maximum of 16 species at the end of the run. 

Species are named systematically. The progenitor population is designated species 1. The 

first speciation event creates species 2. For future speciation events, the “child” population is 

named species (2x + 1), where x is the current species name. The “parent” population is 

designated species (2x + 2). For example, at 100 time-steps, species 1 produces species 3. All 

populations of species 1 are relabeled as species 4. 

 

Tracking variables 

Utilizing NetLogo’s BehaviorSpace tool, relevant population-related variables were 

recorded during each time-step. For the aggregate of all populations on the continent, the mean 

trait value and standard deviation of trait value were recorded. On the species level, the number 

of populations, mean trait value and standard deviation of trait value were recorded. The number 

of existing species was also tracked. 

For each patch, the average trait value of all species, trait value of individual species, and 

species richness (number of occupant species) were also reported during each time step. 

A species was considered to have colonized a region if 5 patches of the region were occupied by 

run’s end. 

 

Barriers to dispersal 

Barriers to dispersal in our model are emergent properties from the interaction of 

environmental parameters, selection intensity, extirpation risk, and dispersal rate. A population 

can disperse into any adjacent grid cell regardless of the parameters, but if the trait optimum is 

substantially different in the new location there is a high probability of immediate extirpation 

because of low fitness. While the mountains are not modeled as physical barriers, they produce 

environmental barriers because of their rain shadow, grit cloud, and temperature gradient (which 



along with precipitation determines vegetation biome).  If extirpation scaling factor is low or if 

adaptive peak width is high (i.e., weak selection) an environmental gradient will pose less of a 

barrier because a poorly adapted population can still survive. Because extirpation is modeled as a 

probability rather than a certainty, even a step environmental gradient can be breached by chance 

if the dispersal rate is high enough.  Rate of dispersal affects the likelihood of eventual success 

because it determines the number of times a population ventures into a cell where it has low 

fitness. The only impassible physical barriers are the oceans at the continental margins. 

 

Climate change modeling 

Climate change mechanics 

 We modeled three scenarios of climate change (gradual, moderate, and rapid) by altering 

annual precipitation, which influences biome type as well as the local selective optimum. At 

predetermined time steps, all patches decrease precipitation levels by a preset amount. All model 

runs, regardless of the rate of climate change, begin and end with all patches on Hesperia having 

the same environment. Each model starts with high precipitation such that most Hesperian 

patches possess forest biomes, with few tundra patches at high elevations. By the end of the 

model, precipitation across all patches decreases by 200 cm and most patches have changed to 

desert. In the gradual climate change scenario, precipitation decreases 5.13 cm every ten steps, in 

the moderate scenario it decreases 28.57 cm of the total change every 50 steps, and in the rapid 

scenario the precipitation decreases 100 cm twice during the run. Minimum precipitation is 

floored at 0 cm per year. During climate change events, each patch’s biome type is reclassified 

using the previously described method. Then, the ideal trait value of each patch is also 

recalculated. 

 

Experiments 

We conducted four experiments varying demographic parameters, each repeated across 

three different climate change scenarios. Experiment A varied dispersal with consistently high 

extirpation (DISP varies between 0 and 1.0, APW = 1.0, ESF = 2.0). Experiment B varied 

dispersal under consistently low extirpation (DISP varies between 0 and 1.0, APW = 1.0, ESF = 

1.0). Experiment C varied ESF under high dispersal (ESF varies between 0 and 2.0, APW = 1.0, 

and DISP = 1.0). Experiment D varied APW under high ESF and high dispersal (APW varies 

between 0 and 3.0, ESF = 2.0, DISP = 1.0). An alteration of Experiment D varied APW under 

low ESF and high dispersal (APW varies between 0 and 3.0, ESF = 1.0, DISP = 1.0). See 

Extended Results & Figure 3 for selected model output and Files S3 for detailed results on 

each model run. 
 


