Module
axelrod model improvement_groupd

ependentat

Simulations based on the Axelrod model and extensions to inspect the volatility of the features over
time (AXELROD MODEL + Agreement threshold + two model variations based on the Social identity
approach) The Axelrod model is used to predict the number of changes per feature in comparison to
the datasets and is used to compare different model variations and their performace.

Input: Real data

—take the number of change per step and not the distance fucntion between the feature vectors as a
break criteria vector-version of axelrod —

Description: The Axelrod model depicts convergence and diversity on a macro level, driven by local
agent-based interaction mechanisms. The agreement-threshold model (MacCarron et al. 2020a), an
extension of the Axel- rod model, acts as a multi-dimensional opinion dynamics model. We extend
these agent-based models by explicit aspects of the social identity approach to recover real-world

dynamics better and to assess the prediction performance of data simulations. We newly introduce
mechanisms on in- and out-group interaction.

Model variations: Parameter: Group-dependent preference - Interaction within a group takes place
without the limitation of the agreement threshold - Interaction between groups involves an
agreement threshold - Group parameter needed

Parameter: In-group preference - Integrates an interaction preference towards in-group members -
Reduced interaction probability with an out-group members - Inter-group interaction still possible,
but unlikely - Group parameter needed

author: alejandro dinkelberg date: 12.01.2022

Functions
def count_cluster(f)
count the number of clusters (agents with identical vectors) #no used#

Args

f . np.array

cultural vectors of the agents



Returns

list
mean cluster size, number of clusters

def feature_distribution(n_features=8, features=None, group_array=None)

get feature distribution for each group

Args
n_features : int, optional

description. Defaults to 8.

features : _type_, optional
description. Defaults to None.

group_array : _type_, optional
description. Defaults to None.

Raises

ValueError
("group and features do not have the same length")
Returns

_type_
(dict) with attitude distributions

def number_of_changes(dataset, precise_difference=True)

define number of changes and give back a dictionary

Args

dataset : string
filename

precise_difference : bool, optional
precise difference (forth and back are two changes) Defaults to True.

Returns

_type_
(dict) differences, (dict) used data, ID_party_aff, diff_array



def run_main(selected_dataset="BJSP', at_value=[1], topo_value=[@], rounds=2000,

only same_group_interaction=False, group_dependent_at=False)
main function

Args

selected_dataset : str, optional
determine dataset. Defaults to '‘BJSP'.

at_value : list, optional
agreement threshold. Defaults to [1].

topo_value : list, optional
topology of the model. Defaults to [0].

rounds : int, optional
max number of simulation runs. Defaults to 2000.

only_same_group_interaction : bool, optional
model variation 1. Defaults to False.

group_dependent_at : bool, optional
model variation 2. Defaults to False.

def run_model(grid, n_features, t_max, objective_changes_list, topo, at, connection,
timepoint_to_measure, data_array, group_array, only_same_group_interaction,

group_dependent_at, q)

callable run function for multiprocessing

Args
grid : int
size of grid

n_features : int
number of features

t_max : int

max running time

objective_changes_list : list
maximum number of changes which are simulated by the mode

topo : int
underlying topology of the model



at : int
agreement threshold; 0 = no agreement threshold

connection : int
number of links between agents (for example to generate AB network)

timepoint_to_measure : int
How often do we measure the state of the model

data_array : np.array
position of each agent from the data

group_array : np.array
group identifies for every agent

only same_group_interaction : bool
model variation; interaction highly limited to group members

group_dependent_at : bool
model variation; at for out-group members and no at for in-group members

q : queue
multiprocessing, get back the results (return statement)

Classes

class AxelrodModelNumpy (Grid_x=10, Grid_y=10, n_features=8, t_max=100,
objective_changes_list=[1000], topo=0, at=0, m_AB=2, memory=False,
timepoint_to_measure=10000, data_array=None, group_array=None,

only_same_group_interaction=False, group_dependent_at=False)

Methods

def run_model(self, t_max)

Run method of the Axelrod model, is dependent on the number of changes from the data
and will stop when the maximum number of possible changes is reached. We only set a
limit to secure that it terminates but usually it should not be reached. The model runs and
gives the results for :param t_max: number of events :return: set of measurements —>
list(humber of changes per feature, length of run, number of overall changes, biggest
cluster size)



Index

Functions

count_cluster
feature_distribution
number_of_changes
run_main

run_model

Classes

AxelrodModelNumpy
run_model

Generated by pdoc 0.10.0.



