Computational Model Library

A Simulation of Arab Spring Protests Informed by Qualitative Evidence

Bruce Edmonds Stephanie Dornschneider | Published Mon Apr 29 12:53:09 2019 | Last modified Fri May 24 10:40:36 2019

The purpose of the simulation was to explore and better understand the process of bridging between an analysis of qualitative data and the specification of a simulation. This may be developed for more serious processes later but at the moment it is merely an illustration.
This exercise was done by Stephanie Dornschneider (School of Politics and International Relations, University College Dublin) and Bruce Edmonds to inform the discussion at the Lorentz workshop on “Integrating Qualitative and Quantitative Data using Social Simulation” at Leiden in April 2019. The qualitative data was collected and analysed by SD. The model specification was developed as the result of discussion by BE & SD. The model was programmed by BE. This is described in a paper submitted to Social Simulation 2019 and (to some extent) in the slides presented at the workshop.

MERCURY extension: population

Tom Brughmans | Published Thu May 23 06:28:44 2019

This model is an extended version of the original MERCURY model (https://www.comses.net/codebases/4347/releases/1.1.0/ ) . It allows for experiments to be performed in which empirically informed population sizes of sites are included, that allow for the scaling of the number of tableware traders with the population of settlements, and for hypothesised production centres of four tablewares to be used in experiments.

Experiments performed with this population extension and substantive interpretations derived from them are published in:

Hanson, J.W. & T. Brughmans. In press. Settlement scale and economic networks in the Roman Empire, in T. Brughmans & A.I. Wilson (ed.) Simulating Roman Economies. Theories, Methods and Computational Models. Oxford: Oxford University Press.

A test-bed ecological model

Bruce Edmonds | Published Sun May 4 13:22:47 2014 | Last modified Wed May 15 14:18:58 2019

This is a multi-patch meta-population ecological model. It intended as a test-bed in which to test the impact of humans with different kinds of social structure.

This model combines decision making models of individual farmers with a model of the spatial spread between farms of blue tongue virus.

Mission San Diego Model

Carolyn Orbann | Published Mon Apr 15 21:06:39 2019

The Mission San Diego model is an epidemiological model designed to test hypotheses related to the spread of the 1805-1806 measles epidemic among indigenous residents of Mission San Diego during the early mission period in Alta California. The model community is based on the population of the Mission San Diego community, as listed in the parish documents (baptismal, marriage, and death records). Model agents are placed on a map-like grid that consists of houses, the mission church, a women’s dormitory (monjeria) adjacent to the church, a communal kitchen, priest’s quarters, and agricultural fields. They engage in daily activities that reflect known ethnographic patterns of behavior at the mission. A pathogen is introduced into the community and then it spreads throughout the population as a consequence of individual agent movements and interactions.

Stylized agricultural land-use model for resilience exploration

Patrick Bitterman | Published Tue Jun 14 15:18:33 2016 | Last modified Mon Apr 8 20:38:38 2019

This model is a highly stylized land use model in the Clear Creek Watershed in Eastern Iowa, designed to illustrate the construction of stability landscapes within resilience theory.

Dental Routine Check-Up

Peyman Shariatpanahi Afshin Jafari | Published Thu Mar 10 03:39:49 2016 | Last modified Mon Apr 8 20:37:20 2019

We develop an agent-based model for collective behavior of routine medical check-ups, and specifically dental visits, in a social network.

Agent-based model for centralized student admission process

Connie Wang Bin-Tzong Chi Shu-Heng Chen | Published Wed Nov 4 20:41:02 2015 | Last modified Wed Mar 6 00:49:36 2019

This model is to match students and schools using real-world student admission mechanisms. The mechanisms in this model are serial dictatorship, deferred acceptance, the Boston mechanism, Chinese Parallel, and the Taipei mechanism.

An Agent-Based School Choice Matching Model

Connie Wang Weikai Chen Shu-Heng Chen | Published Sun Feb 1 13:19:48 2015 | Last modified Wed Mar 6 00:49:06 2019

This model is to simulate and compare the admission effects of 3 school matching mechanisms, serial dictatorship, Boston mechanism, and Chinese Parallel, under different settings of information released.

RobbyGA modified 2019

Timothy Gooding | Published Sun Feb 24 10:29:32 2019

This is a modification of the RobbyGA model by the Santa Fe Institute (see model Info tab for full information). The basic idea is that the GA has been changed to one where the agents have a set lifetime, anyone can reproduce with anyone, but where there is a user-set amount of ‘starvation’ that kills the agents that have a too low fitness.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.