Computational Model Library

MERCURY extension: transport-cost

Tom Brughmans | Published Mon Jul 23 11:08:11 2018

This is extended version of the MERCRUY model (Brughmans 2015) incorporates a ‘transport-cost’ variable, and is otherwise unchanged. This extended model is described in this publication: Brughmans, T., 2019. Evaluating the potential of computational modelling for informing debates on Roman economic integration, in: Verboven, K., Poblome, J. (Eds.), Structural Determinants in the Roman World.

Brughmans, T., 2015. MERCURY: an ABM of tableware trade in the Roman East. CoMSES Comput. Model Libr. URL https://www.comses.net/codebases/4347/releases/1.1.0/

SearchResource

Romulus-Catalin Damaceanu | Published Fri May 4 06:29:21 2012 | Last modified Sat Apr 27 20:18:45 2013

An algorithm implemented in NetLogo that can be used for searching resources.

Irrigation game

Marco Janssen | Published Mon Jul 23 04:15:12 2012 | Last modified Sat Apr 27 20:18:37 2013

Irrigation game calibrated on experimental data

Peer reviewed B3GET

Kristin Crouse | Published Thu Nov 14 20:07:16 2019 | Last modified Tue Nov 19 17:42:04 2019

B3GET simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in fighting ability and aggression, sperm competition, infanticide, and competition over access to food and mates. Downloaded materials include a starting genotype and population files. Edit the these files and see what changes occur in the behavior of virtual populations!

Peer reviewed Modelling the Social Complexity of Reputation and Status Dynamics

André Grow Andreas Flache | Published Wed Feb 1 19:23:32 2017 | Last modified Wed Jan 23 16:46:42 2019

The purpose of this model is to illustrate the use of agent-based computational modelling in the study of the emergence of reputation and status beliefs in a population.

MayaSim: An agent-based model of the ancient Maya social-ecological system

Scott Heckbert | Published Wed Jul 11 19:55:24 2012 | Last modified Tue Jul 2 17:14:49 2013

MayaSim is an agent-based, cellular automata and network model of the ancient Maya. Biophysical and anthropogenic processes interact to grow a complex social ecological system.

An Agent-Based Model of Language Contact

Marco Civico | Published Tue Jul 30 13:28:25 2019

This model is part of an article that discusses the adoption of a complexity theory approach to study the dynamics of language contact within multilingual communities. The model simulates the dynamics of communication within a community where a minority and a majority group coexist. The individual choice of language for communication is based on a number of simple rules derived from a review of the main literature on the topic of language contact. These rules are then combined with different variables, such as the rate of exogamy of the minority group and the presence of relevant education policies, to estimate the trends of assimilation of the minority group into the majority one. The model is validated using actually observed data from the case of Romansh speakers in the canton of Grisons, Switzerland.

A simple Multi-Agent System of the Tragedy Of the Commons (MASTOC-s)

Julia Schindler | Published Fri Jun 29 13:39:10 2012 | Last modified Sat Apr 27 20:18:19 2013

This is a simple model replicating Hardin’s Tragedy of the Commons using reactive agents that have psychological behavioral and social preferences.

This is the R code of the mathematical model used for verification. This code corresponds to equations 1-9, 15-53, 58-62, 69-70, and 72-75 given in the paper “A Mathematical Model of The Beer Game”.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.