
SIMULATING THE COST OF
SOCIAL CARE IN AN AGEING

POPULATION
Eric Silverman, Jason Hilton, Jason Noble and Jakub Bijak

The Care Life Cycle Project
University of Southampton

Southampton SO17 1BJ, United Kingdom
Email: e.silverman@soton.ac.uk

KEYWORDS

Policy Modelling, Social Simulation, Agent-Based
Modelling, Social Care, Population Change

ABSTRACT

In this paper we present an agent-based model of
the ageing UK population. The goal of this model
is to integrate statistical demographic projections of
the UK population with an agent-based platform
that allows us to examine the interaction between
population change and the cost of social care in an
ageing population. The model captures the basic
processes which affect the demand for and supply of
social care, including fertility, mortality, health sta-
tus, and partnership formation and dissolution. The
mortality and fertility rates in this population are
drawn from statistical demographic projections until
2050 based on UK population data from 1951 - 2011.
Results show that, in general, we expect the cost
of social care in the UK to rise significantly as the
population continues to age. An in-depth sensitivity
analysis performed using Gaussian Process Emula-
tors confirms that the level of care need within the
population and the age of retirement have the most
profound impact on the projected cost of social care.

INTRODUCTION

As the UK population continues to age, the shift
in the age structure of the population puts ever-
increasing strain on the country’s social care infras-
tructure. The elderly are the primary consumers of
social care services, and dropping birthrates com-
bined with lengthening lifespans mean that while the
demand for social care continues to increase, we can
expect the supply of social care to decrease as the
workforce also ages (Coleman 2002).

The Care Life Cycle Project is pursuing an inter-
disciplinary approach to this critical societal problem
(Brailsford et al. 2012). Given the multiple com-
plex life-course transitions that can affect the pro-
vision of social care – decisions in partnership for-
mation, changes in health status, internal migration,
and many others – understanding the population dy-

namics underlying this issue requires an approach
that can capture the interactions between these fac-
tors. While statistical demographic analyses are crit-
ical in order to show us the population change we
can expect in the coming decades, we must supple-
ment these figures with a more detailed examination
of the processes underlying these dynamics in order
to make substantive policy recommendations on the
distribution and organisation of social care services.

We propose that combining agent-based ap-
proaches with empirically-driven statistical demogra-
phy allows us to better align social simulations with
the ‘real world’. In addition, such models can bene-
fit the study of population change by harnessing the
flexibility of agent-based approaches to allow for ex-
ploration of scenarios of population change. This
allows for a shift in demographic studies toward ex-
plaining and understanding the processes underly-
ing population change, rather than focusing entirely
on the prediction and description of empirical trends
(Silverman et al. 2012).

Our model moves in this direction by presenting
an agent-based platform which captures the complex
life-course transitions that influence the demand and
supply of social care (Noble et al. 2012). Agents are
embedded in a 2D space designed to reflect UK geog-
raphy, and during the course of the simulation they
go through processes of fertility, mortality, partner-
ship formation and dissolution, household formation,
and internal migration. Combining this approach
with empirical projections until 2050 and vital reg-
istration data from 1951-2011 has provided us with
a platform that combines the explanatory power of
agent-based modelling with the macro-level predic-
tive power of statistical demography (Silverman et al.
2011).

THE MODEL

Basics of the model

Space precludes a complete description of the
many parameters present within the simula-
tion. We have attempted to provide a com-
prehensive overview here; for those who wish
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to examine the model more closely, you can
find the annotated Python code available at
http://users.ecs.soton.ac.uk/jn2/software.php.
Code for the current version incorporating our demo-
graphic modifications will be made available as well.

In order to facilitate the use of UK demographic
data, we based the model’s spatial environment on
a rough representation of UK geography. Agents
occupy houses, which are then grouped into towns
which consist of clusters of up to 625 houses. The
size of these clusters vary according to local popula-
tion density which varies across the 8×12 grid which
represents the UK.

The agent population has a scaling factor of
1:10,000, given that modelling the entire UK popula-
tion of 62 million individuals would be prohibitively
expensive computationally. This is a greater re-
duction in scale than is used in microsimulation
models of populations, given that the spatially-
embedded nature of the agents coupled with their
complex behaviours requires substantially more com-
puter power.

The model runs on time steps one year in length.
The initial population is generated and distributed
randomly in simulation year 1860, then the model
runs until 2050, at which point the final figures for
social care cost are collected. The model starts early
in order to ensure that the population dynamics of
the agents can settle prior to the integration of em-
pirical data into the model in 1951.

Agents are able to form and dissolve partnerships
with one another. We use the term ‘partnership’ to
refer to any possible relationship that may produce
children. Every year agents not currently in partner-
ships will enter the marriage market, which operates
on a national level. Agents are paired with available
opposite-sex agents if they meet each other’s crite-
ria for a mate. Partnership dissolution is driven by
an annual age-specific probability that the male part-
ner will leave. The parameters governing partnership
behaviour are not, at present, derived from empiri-
cal data, but are instead estimates based on observed
rates of partnership formation and dissolution.

Health status and care need

Agents in the simulation begin in a normal health
state, in which we assume they require no additional
care services. There are age- and sex-specific prob-
abilities which may push the agents into a differ-
ent care need category; these are checked annually
amongst all agents in the simulation. Agents can
transition into any of several different levels of care
need, shown in Table I. Once agents transition into a
care-need state, their health status may only degrade
further – they do not recover.

The model also investigates the supply side of so-
cial care, by linking the provision of informal care to
the availability of agents and their household struc-
ture. We assume that any agent will provide care to

TABLE I: The different care need categories, with the number
of hours of care required per week

Care need category Weekly hours of care required
None 0
Low 8

Moderate 16
Substantial 30

Critical 80

any member of their household who requires it, so
long as they have time available. Agents have vary-
ing amounts of time available with which to provide
care, depending on their current status: dependent
children can provide five hours per week; adults still
living at home can provide 30 hours; and retired peo-
ple can provide 60 hours. Agents who require care
themselves can provide care as well, but only if their
own care-need status is Low, and even then only for
half the normal number of hours for their status.

The current model does not explicitly represent
formal care institutions, such as care homes or sim-
ilar. Instead, we assume that all available agents
(agents in the same household, or children living in
the same town) will provide care to the best of their
ability, and any remaining care needs are provided by
the formal care system. We assume that the state is
able to provide this formal care at a cost of £20 per
hour. This figure is a rough estimate, to be supple-
mented by current data when this becomes available.
Inflation is not represented in this model, so all care
costs are expressed in 2012 UK pounds.

Agent life-course

Newborn agents are classified as dependent chil-
dren, transitioning to adulthood at the age of 17. All
agents enter the workforce at this time and become
tax-payers. Adults are further classified into those
who have moved out of the family home and those
who have chosen to stay with their parents. Agents
who reach the age of 65 retire from the workforce and
cease paying tax.

The model allows agents to migrate to a new house
on the map under several different conditions. When
agents form a partnership, there is a 30% chance
that they will choose to form a new household with
their partner. Agents who take this option have a
30% probability of moving into their partner’s home,
which may still be the family home of that part-
ner and thus contain other family members. Agents
who choose to move elsewhere will either form a new
household in the same town or an adjacent town to
the location of one partner. When a partnership dis-
solves, the male agent will move elsewhere on the
map, while any dependent children resulting from
that partnership will stay with the mother.

Agents can also migrate to new households inde-
pendently of an partnership upon reaching adult-
hood. There is an annual age-specific probability
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Fig. 1: Results for five different values of the parameter con-
trolling the likelihood of aged parents returning home to live
with their children.
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Fig. 2: Results for five different values of the parameter speci-
fying the hours of informal care provided by retired individuals
to their family members.

that an agent will make this choice. On occasion,
single adults or family groups may make an arbi-
trary move – representing perhaps a change in career
or life circumstances that would require a move. Re-
tired agents who live alone also have a small annual
probability of moving in with one of their surviving
children, scaling inversely with the distance between
their current town of residence and the location of
the child.

Finally, on rare occasions dependent children
agents will have both parents die prior to them reach-
ing adulthood. In these cases we have the agent
adopted by a randomly-chosen couple, and the child
will move to join their household.

Demographic Projections

The original version of this model used a sim-
ple Gompertz-Makeham mortality model which was
tuned to give reasonable mortality rates for a mod-
ern industrialised nation (Noble et al. 2012). Fertility
rates were represented simply by a flat probability of
reproduction for any woman of reproductive age in
a partnership. In order to increase the realism of
this iteration of the model and to tighten its integra-
tion with empirical data, we replaced these simpli-
fications with more robust models of mortality and
fertility. The shift toward realistic mortality projec-
tions ensures that we capture the complexities of the
trend toward longer lifespans, and the incorporation
of a realistic and detailed fertility model captures the
societal move toward later child-bearing and lower
birth-rates. These additions were inspired by previ-
ous work combining agent-based models with statis-
tical demography (Silverman et al. 2012).

In the new mortality model, we continue to use
the approximations used in the previous iteration
until the simulation reaches 1951, at which point
we switch to age-specific mortality rates drawn from
the Human Mortality database 2011 until simula-
tion year 2009. Similarly, in 1951 the fertility model

switches from a single rate to age-specific mortal-
ity rates drawn from the Office of National Statis-
tics data 1998 for England and Wales (for simulation
years 1951-1972), then the Eurostat database 2011
for UK women of childbearing age (for simulation
years 1973–2009).

These rates were projected forward until 2050 us-
ing the forecasting method developed by Lee and
Carter 1992. The Lee-Carter method uses the lead-
ing vectors of a singular value decomposition of
the matrix of centred mortality rates to construct
a model for mortality with only one time-varying
element. This allows easy forecasting using stan-
dard times series methods; more details about proce-
dure and estimation are available in Lee and Carter
(1992). The forecasts performed through 2050 us-
ing this method show life expectancy continually in-
creasing over the period, though the increase slows
gradually.

Fertility rates used in this model were also based
on empirical data. Age-specific fertility rates from
1973–2009 for UK women of childbearing age were
obtained from the Eurostat database (2011), while
earlier data for the period 1950–1972 were taken from
the Office of National Statistics data for England and
Wales (1998).

Once again we used a Lee-Carter model to obtain
future fertility rates. In this case two components of
the singular value decomposition matrix of fertility
rates were used, as two time indices are required to
capture the trends in fertility. Projections to 2050
using this method show an initial rise in total fertil-
ity rate prior to a convergence at a rate just above
replacement fertility. Overall, we see a continuation
of the current empirical trend toward later childbear-
ing.
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Fig. 3: Results for five different values of the parameter spec-
ifying the base probability that an agent transitions to requir-
ing social care.
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Fig. 4: Results for five different values of the parameter spec-
ifying the retirement age for agents within the simulation.

RESULTS

Basic results

Initial investigations of the model were driven by
our goal of determining which parameters have the
greatest impact upon the cost of social care per tax-
payer in 2050. We ran the model under five differ-
ent variations of four critical parameters for ten runs
each, measuring as output the mean social care cost
per taxpayer per year at the end of the simulation. In
the graphs detailed here, the vertical axis represents
care cost, while the horizontal axis displays the mean
care cost for ten runs of a given parameter value. The
centre bar of each histogram is the default value of
that parameter.

The parameters we investigate – the probability
of retired parents moving in with children, hours
of informal care that can be provided by retirees,
base probability for social care need for an individual
agent, and retirement age – were chosen because they
are areas which policy changes could have some influ-
ence (i.e., via changes in formal care provision, insti-
tutionalised care provision, tax and welfare changes,
etc.). The five variations of each parameter were cho-
sen to give a reasonable range of values from very
conservative to very optimistic estimates.

Figure 1 shows the results of a series of runs in
which we varied the probability of retired parents
returning home to live with their children. We as-
sumed that this may have an impact on the final
social care figures, as these retired adults more ac-
cessible to informal care from their children. Instead,
we found that even significant alterations in this pa-
rameter have no perceivable impact on the final fig-
ures. This suggests that the share of retired parents
moving back in with their children has no significant
impact on final care cost figures.

Figure 2 shows the results of varying the number
of hours of informal care that can be provided by
retired adults. Here we see that high levels of care

availability amongst this group do appear to impact
the final social care costs, at least at the higher set-
tings. Retirees can provide the largest amount of
informal care hours, and as a group are more likely
to live in a household with someone who needs care,
so a greater availability of informal care in these cir-
cumstances appears to take some burden off the costs
to the state.

In Figure 3 we see the results of varying the base
probability for an agent to transition into a state of
care need. This base probability is then modified
by the age and sex of each agent; this allows us to
represent the increased need for care amongst elderly
males as compared to females, for example. Varying
this parameter has a dramatic impact on the final
care costs; doubling the default value produces social
care costs that balloon to far more than double the
results we see at the default level.

Finally, in Figure 4 we examine the impact of
changing the retirement age within the simulation.
The default age is 65, and here we varied that age
between 50 and 75 in increments of 5 years of age.
Results show a significant reduction in overall care
costs when agents retire later in life; this appears to
be due to the substantial benefits of having a larger
tax base as agents stay in the workforce longer and
continue to pay into the system.

Interestingly, this pattern appears to level off at
the age of 70, indicating a point of diminishing re-
turns – and at age 75 the cost of social care actu-
ally rises slightly. This occurs despite the lack of
any modelling of the health or wellbeing impact that
may come from working until very late in life. We
suspect that this appears in the model due to the
reduced availability of care from adults remaining in
the workforce; at a certain point, the increased tax
payments from elderly workers will be offset by the
reduction in available informal care amongst house-
holds with elderly members who are more likely to
require care.
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Fig. 5: Filled contour plot showing the model outputs for
varying values of the base care probability and retirement age.
The plot shows that a low retirement age combined with high
care need probability generates the highest social care costs,
producing mean costs per taxpayer well above £20,000 per
year.

Fig. 6: Results of a sensitivity analysis performed using GEM-
SA software. Results show that probability of care need and
retirement age account for the vast majority of variation in
the results. Source: GEM-SA software (own calculations).

These results indicate that retirement age and base
care-need probability have the strongest impact on
model outputs. Figure 5 provides a concise illustra-
tion of the impact of these two parameters. High
care-need probabilities combined with low retirement
age produces some extremely high values for the
mean social care cost per taxpayer per year. In con-
trast a combination of high retirement age and low
base care-need probability produce much more man-
ageable figures, as greater numbers of healthy agents
are continuing to work and provide care informally
well into later life.

Sensitivity Analysis

The results above indicated that some of these pa-
rameters are interacting in interesting and perhaps
non-obvious ways, in particular the results for alter-
ing retirement age and available informal care hours
amongst the retired. As part of the Care Life Cy-
cle Project we have been investigating methods for
quantifying uncertainty within statistical and com-
putational models, and this model provides an excel-
lent test case for some of these methods, given the
complex interactions occurring between the systems
represented here.

Here we took inspiration from another project,
Managing Uncertainty in Complex Models (http:
//www.mucm.ac.uk/) and used specialised software
to build a statistical emulator of the computational
model. These emulators are Gaussian processes anal-
ysed in a Bayesian framework, allowing us to pro-
duce an effective sensitivity analysis which provides
insight into the relative importance of various input
parameters in the final output variance (O’Hagan
2006). These methods also provide a means of ac-

counting for uncertainty within the program code,
using an additional term called a nugget (Kennedy
2004).

Space precludes a detailed description of the sta-
tistical methods underlying Gaussian process emu-
lators, so instead we refer the interested reader to
Kennedy and O’Hagan (2001). In brief, these em-
ulators function by assuming that the output vari-
able (in this case, mean social care cost per taxpayer
per year) can be decomposed into a constant (mean)
term, a series of main effects related to particular in-
put parameters, and a series of interaction effects for
all possible combinations of input parameters. The
final result is a measure of how much of the total
output variance is accounted for by each individual
input and each possible combination of inputs.

In our case, we used the four parameters investi-
gated above as our input parameters for the emula-
tor, and our output measure was the mean social care
cost per taxpayer per year in simulation year 2050.
Running multiple sets of runs at all possible combina-
tions of the values shown above for those parameters
produced a training set of some 1,300 results, which
were then fed into the emulator. The emulator and
the resultant analysis were produced by the GEM-SA
(Gaussian Emulation Machine for Sensitivity Analy-
sis) software version 1.1 by Kennedy (2004).

The results in Figure 6 show that the vast major-
ity of the output variance is accounted for by our
alterations in the base probability of an agent re-
quiring care (88.99%), followed by the retirement
age (8.06%). In contrast, the amount of hours avail-
able from retired carers and the probability of retired
adults moving home had very little impact (account-
ing for 0.88% and 0.01% of the output variance, re-



Fig. 7: Results of Gaussian Process Emulator demonstrating the impact of each parameter on final output values. The output
value is the mean cost of social care per taxpayer per year at the end of the simulation in year 2050. Source: GEM-SA software
(own calculations).

spectively). These results confirm our findings pre-
sented in Figure 3 and Figure 4. Figure 7 provides a
visual representation of emulator results; each graph
shows the main effects of each parameter, with each
individual line representing one emulation run.

There was some additional impact from the two-
way interactions between these parameters, most no-
ticeably in the interaction between retirement age
and the base probability of care need (1.88%). In
general however the interaction effects were dwarfed
by the impact of the main effects.

CONCLUSIONS

As suggested in our previous work with this mod-
elling framework, we bolstered the realism of our
model using significantly more detailed mortality and
fertility models derived from statistical demographic
data (Noble et al. 2012). The incorporation of Lee-
Carter projections (1992) has moved us further to-
ward a useful integration of demographic data and
agent-based approaches, and future work will con-
tinue to push this forward, as proposed in Silverman
et al. (2011).

The results and sensitivity analysis shown here
provide a few hints as to the future challenges fac-
ing an ageing population. We see dramatic shifts
in the results when we alter the retirement age and
the probability of agents needing social care. This
suggests that two major ‘policy levers’ which policy-
makers may examine would be comprehensive pro-

grammes for health amongst the elderly population,
and a small increase in the retirement age. The for-
mer could significantly alter care need levels by pro-
viding preventative care, thus reducing long-term so-
cial care costs. This could also allow for the provision
of more informal care in this age group, as healthier
partners would be better able to provide care – and
given that most social care in the UK is provided by
family members (Vlachantoni et al. 2011), this could
have a significant impact. The latter would allow a
significant increase in the tax base amongst older cit-
izens, allowing for more funding for social care costs.

However, our results indicate that the benefits of
increasing retirement age level off at around 70 years
of age. Intriguingly, this occurs even without any ex-
plicit representation of the health impact of working
until late in life. Future iterations of the model could
shed more light on this effect by allowing for more
richness in agent decision-making and incorporating
the affects of education and socioeconomic status on
health in old age.

More generally, future work can refine these predic-
tions by adding more detail to the social care struc-
tures in the model, in particular by adding a more
detailed representation of formal care provision. We
also will add a more robust migration element which
allows for international migration, thus representing
the impact of young workers entering the UK. De-
mographic studies have shown that some level of re-
placement migration in tandem with policies aimed



at increased labour force participation and raising
birth rates might ameliorate the challenges of an age-
ing society (Bijak et al. 2008).

In summary, our model has provided a useful plat-
form for discussion around the issue of social care
provision in an ageing UK society, and has shed some
light on the interactions between retirement age, in-
formal social care provision and overall social care
cost. The combination of these illustrative scenarios
and in-depth sensitivity analyses gives us a strong
suite of tools with which to examine the potential
impact of policy decisions and economic and social
shifts on social care provision in an ageing society.

ACKNOWLEDGMENTS

This work was supported by the UK’s Engineer-
ing and Physical Sciences Research Council, grant
EP/H021698/1, funded within the Complexity Sci-
ence in the Real World theme. We would also like
to thank Marc Kennedy and Anthony O’Hagan for
making the excellent GEM-SA software freely avail-
able.

REFERENCES

Bijak, J., Kupiszewska, D., and Kupiszewska, M.
(2008). Replacement migration revisited: Simula-
tions of the effects of selected population and labor
market strategies for the aging Europe, 2002–2052.
Population Research and Policy Review, 27(3):321–
342.

Brailsford, S., Silverman, E., Rossiter, S., Bijak, J.,
Shaw, R., Viana, J., Noble, J., Efstathiou, S., and
Vlachantoni, A. (2012). Complex systems mod-
elling for supply and demand in health and social
care. In Jain, S., Creasey, R., Himmelspach, J.,
White, K., and Fu, M., editors, Proceedings of the
2011 Winter Simulation Conference. IEEE.

Coleman, D. (2002). Replacement migration, or
why everyone is going to have to live in Korea:
a fable for our times from the United Nations.
Philosophical Transactions of the Royal Society B,
357(1420):583–598.

Eurostat (2011). Eurostat statistics database:
Domain population and social conditions.
http://epp.eurostat.ec.europa.eu. Accessed
27/10/2011.

Human Mortality Database (2011). Human mor-
tality database. http://www.mortality.org/

cgi-bin/hmd. Accessed 26/07/2011.
Kennedy, M. (2004). Description of the Gaussian

process model used in GEM-SA. Software manual.
http://ctcd.group.shef.ac.uk/gem.html. Ac-
cessed 23/05/2012.

Kennedy, M. and O’Hagan, T. (2001). Bayesian cal-
ibration of computer models. Journal of the Royal
Statistical Society, Series B, 63(3):425–464.

Lee, R. and Carter, L. (1992). Modeling and fore-
casting U.S. mortality. Journal of the American
Statistical Association, 87(419):659–671.

Noble, J., Silverman, E., Bijak, J., Rossiter, S., Evan-
drou, M., Bullock, S., Vlachantoni, A., and Falk-
ingham, J. (2012). Linked lives: the utility of an
agent-based approach to modelling partnership and
household formation in the context of social care.
In Laroque, C., Himmelspach, J., Pasupathy, R.,
Rose, O., and Uhrmacher, J., editors, Proceedings
of the 2012 Winter Simulation Conference. IEEE.

Office for National Statistics (1998). Birth Statis-
tics, Series FM1 (27). Office for National Statis-
tics, London.

O’Hagan, A. (2006). Bayesian analysis of computer
code outputs: a tutorial. Reliability Engineering
and System Safety, 91(10-11):1290–1300.

Silverman, E., Bijak, J., Cao, V., and Hilton, J.
(2012). Semi-artificial models of population: Con-
necting demography with agent-based modelling.
In Proceedings of the 4th World Congress on Social
Simulation.

Silverman, E., Bijak, J., and Noble, J. (2011). Feed-
ing the beast: Can computational demographic
models free us from the tyranny of data? In
Lenaerts, T., Giacobini, M., Bersini, H., Bourgine,
P., Dorigo, M., and Doursat, R., editors, Advances
in Artificial Life, ECAL 2011, pages 747–754. MIT
Press, Cambridge, MA.

Vlachantoni, A., Shaw, R., Willis, R., Evandrou, M.,
and Luff, J. (2011). Measuring unmet need for so-
cial care amongst older people. Population Trends,
145:60–76.

AUTHOR BIOGRAPHIES

ERIC SILVERMAN is a Research Fellow on the Care
Life Cycle project at the University of Southampton. He re-
ceived his PhD from the University of Leeds, and previously
worked as a JSPS Postdoctoral Research Fellow at the Uni-
versity of Tokyo. His work on the CLC Project focuses on the
application of complexity science approaches to the social sci-
ence domain. His email address is e.silverman@soton.ac.uk.

JASON HILTON is a Post-Graduate Researcher at the
Institute of Complex Systems Simulation and the Division of
Social Statistics and Demography at Southampton. He holds
a BA in Politics from the University of York, and an MSc in
Demography from the University of Southampton. His PhD
work focuses on applications of complex systems simulation in
demography. His email address is jdh4g10@soton.ac.uk.

JASON NOBLE is a Lecturer in Computer Science at
Southampton. He received a DPhil in Cognitive and Comput-
ing Sciences from the University of Sussex in 1998. He is the
Taught Programme Director for Southampton’s Institute for
Complex Systems Simulation and has a background spanning
AI, philosophy of science, psychology, and statistics. His email
address is jn2@ecs.soton.ac.uk.

JAKUB BIJAK is a Lecturer in Demography at
Southampton. He holds a PhD from the Warsaw School of
Economics, obtained for work on Bayesian migration forecast-
ing. His research interests encompass the applications of quan-
titative methods in demography, with focus on demographic
uncertainty, population forecasting, migration and demogra-
phy of conflict. His email address is J.Bijak@soton.ac.uk.




